Metamath Proof Explorer


Theorem vonn0hoi

Description: The Lebesgue outer measure of a multidimensional half-open interval when the dimension of the space is nonzero. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0hoi.x φXFin
vonn0hoi.n φX
vonn0hoi.a φA:X
vonn0hoi.b φB:X
vonn0hoi.i I=kXAkBk
Assertion vonn0hoi φvolnXI=kXvolAkBk

Proof

Step Hyp Ref Expression
1 vonn0hoi.x φXFin
2 vonn0hoi.n φX
3 vonn0hoi.a φA:X
4 vonn0hoi.b φB:X
5 vonn0hoi.i I=kXAkBk
6 eqid xFinax,bxifx=0kxvolakbk=xFinax,bxifx=0kxvolakbk
7 1 3 4 5 6 vonhoi φvolnXI=AxFinax,bxifx=0kxvolakbkXB
8 6 1 2 3 4 hoidmvn0val φAxFinax,bxifx=0kxvolakbkXB=kXvolAkBk
9 7 8 eqtrd φvolnXI=kXvolAkBk