Metamath Proof Explorer


Theorem vopnbgrel

Description: Characterization of a member X of the semiopen neighborhood of a vertex N in a graph G . (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfvopnbgr2.v V = Vtx G
dfvopnbgr2.e E = Edg G
dfvopnbgr2.u U = n V | n G NeighbVtx N e E N = n e = N
Assertion vopnbgrel N V X U X V e E X N N e X e X = N e = X

Proof

Step Hyp Ref Expression
1 dfvopnbgr2.v V = Vtx G
2 dfvopnbgr2.e E = Edg G
3 dfvopnbgr2.u U = n V | n G NeighbVtx N e E N = n e = N
4 1 2 3 dfvopnbgr2 N V U = n V | e E n N N e n e n = N e = n
5 4 eleq2d N V X U X n V | e E n N N e n e n = N e = n
6 neeq1 n = X n N X N
7 eleq1 n = X n e X e
8 6 7 3anbi13d n = X n N N e n e X N N e X e
9 eqeq1 n = X n = N X = N
10 sneq n = X n = X
11 10 eqeq2d n = X e = n e = X
12 9 11 anbi12d n = X n = N e = n X = N e = X
13 8 12 orbi12d n = X n N N e n e n = N e = n X N N e X e X = N e = X
14 13 rexbidv n = X e E n N N e n e n = N e = n e E X N N e X e X = N e = X
15 14 elrab X n V | e E n N N e n e n = N e = n X V e E X N N e X e X = N e = X
16 5 15 bitrdi N V X U X V e E X N N e X e X = N e = X