Metamath Proof Explorer


Theorem vr1cl2

Description: The variable X is a member of the power series algebra R [ [ X ] ] . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses vr1val.1 X=var1R
vr1cl2.2 S=PwSer1R
vr1cl2.3 B=BaseS
Assertion vr1cl2 RRingXB

Proof

Step Hyp Ref Expression
1 vr1val.1 X=var1R
2 vr1cl2.2 S=PwSer1R
3 vr1cl2.3 B=BaseS
4 1 vr1val X=1𝑜mVarR
5 eqid 1𝑜mPwSerR=1𝑜mPwSerR
6 eqid 1𝑜mVarR=1𝑜mVarR
7 eqid Base1𝑜mPwSerR=Base1𝑜mPwSerR
8 1on 1𝑜On
9 8 a1i RRing1𝑜On
10 id RRingRRing
11 0lt1o 1𝑜
12 11 a1i RRing1𝑜
13 5 6 7 9 10 12 mvrcl2 RRing1𝑜mVarRBase1𝑜mPwSerR
14 2 psr1val S=1𝑜ordPwSerR
15 0ss 1𝑜×1𝑜
16 15 a1i RRing1𝑜×1𝑜
17 5 14 16 opsrbas RRingBase1𝑜mPwSerR=BaseS
18 17 3 eqtr4di RRingBase1𝑜mPwSerR=B
19 13 18 eleqtrd RRing1𝑜mVarRB
20 4 19 eqeltrid RRingXB