Metamath Proof Explorer


Theorem wdomtr

Description: Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion wdomtr X*YY*ZX*Z

Proof

Step Hyp Ref Expression
1 relwdom Rel*
2 1 brrelex2i Y*ZZV
3 2 adantl X*YY*ZZV
4 0wdom ZV*Z
5 breq1 X=X*Z*Z
6 4 5 syl5ibrcom ZVX=X*Z
7 3 6 syl X*YY*ZX=X*Z
8 simpll X*YY*ZXX*Y
9 brwdomn0 XX*Yzz:YontoX
10 9 adantl X*YY*ZXX*Yzz:YontoX
11 8 10 mpbid X*YY*ZXzz:YontoX
12 simpllr X*YY*ZXz:YontoXY*Z
13 simplr X*YY*ZXz:YontoXX
14 dm0rn0 domz=ranz=
15 14 necon3bii domzranz
16 15 a1i z:YontoXdomzranz
17 fof z:YontoXz:YX
18 17 fdmd z:YontoXdomz=Y
19 18 neeq1d z:YontoXdomzY
20 forn z:YontoXranz=X
21 20 neeq1d z:YontoXranzX
22 16 19 21 3bitr3rd z:YontoXXY
23 22 adantl X*YY*ZXz:YontoXXY
24 13 23 mpbid X*YY*ZXz:YontoXY
25 brwdomn0 YY*Zyy:ZontoY
26 24 25 syl X*YY*ZXz:YontoXY*Zyy:ZontoY
27 12 26 mpbid X*YY*ZXz:YontoXyy:ZontoY
28 vex zV
29 vex yV
30 28 29 coex zyV
31 foco z:YontoXy:ZontoYzy:ZontoX
32 fowdom zyVzy:ZontoXX*Z
33 30 31 32 sylancr z:YontoXy:ZontoYX*Z
34 33 adantl X*YY*ZXz:YontoXy:ZontoYX*Z
35 34 expr X*YY*ZXz:YontoXy:ZontoYX*Z
36 35 exlimdv X*YY*ZXz:YontoXyy:ZontoYX*Z
37 27 36 mpd X*YY*ZXz:YontoXX*Z
38 11 37 exlimddv X*YY*ZXX*Z
39 38 ex X*YY*ZXX*Z
40 7 39 pm2.61dne X*YY*ZX*Z