| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relwdom |
|
| 2 |
1
|
brrelex2i |
|
| 3 |
2
|
adantl |
|
| 4 |
|
0wdom |
|
| 5 |
|
breq1 |
|
| 6 |
4 5
|
syl5ibrcom |
|
| 7 |
3 6
|
syl |
|
| 8 |
|
simpll |
|
| 9 |
|
brwdomn0 |
|
| 10 |
9
|
adantl |
|
| 11 |
8 10
|
mpbid |
|
| 12 |
|
simpllr |
|
| 13 |
|
simplr |
|
| 14 |
|
dm0rn0 |
|
| 15 |
14
|
necon3bii |
|
| 16 |
15
|
a1i |
|
| 17 |
|
fof |
|
| 18 |
17
|
fdmd |
|
| 19 |
18
|
neeq1d |
|
| 20 |
|
forn |
|
| 21 |
20
|
neeq1d |
|
| 22 |
16 19 21
|
3bitr3rd |
|
| 23 |
22
|
adantl |
|
| 24 |
13 23
|
mpbid |
|
| 25 |
|
brwdomn0 |
|
| 26 |
24 25
|
syl |
|
| 27 |
12 26
|
mpbid |
|
| 28 |
|
vex |
|
| 29 |
|
vex |
|
| 30 |
28 29
|
coex |
|
| 31 |
|
foco |
|
| 32 |
|
fowdom |
|
| 33 |
30 31 32
|
sylancr |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
expr |
|
| 36 |
35
|
exlimdv |
|
| 37 |
27 36
|
mpd |
|
| 38 |
11 37
|
exlimddv |
|
| 39 |
38
|
ex |
|
| 40 |
7 39
|
pm2.61dne |
|