Metamath Proof Explorer


Theorem welb

Description: A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion welb R We A B C B A B R -1 Or B x B y B ¬ x R -1 y y B y R -1 x z B y R -1 z

Proof

Step Hyp Ref Expression
1 wess B A R We A R We B
2 1 impcom R We A B A R We B
3 weso R We B R Or B
4 2 3 syl R We A B A R Or B
5 cnvso R Or B R -1 Or B
6 4 5 sylib R We A B A R -1 Or B
7 6 3ad2antr2 R We A B C B A B R -1 Or B
8 wefr R We B R Fr B
9 2 8 syl R We A B A R Fr B
10 9 3ad2antr2 R We A B C B A B R Fr B
11 ssidd B A B B
12 11 3anim2i B C B A B B C B B B
13 12 adantl R We A B C B A B B C B B B
14 frinfm R Fr B B C B B B x B y B ¬ x R -1 y y B y R -1 x z B y R -1 z
15 10 13 14 syl2anc R We A B C B A B x B y B ¬ x R -1 y y B y R -1 x z B y R -1 z
16 7 15 jca R We A B C B A B R -1 Or B x B y B ¬ x R -1 y y B y R -1 x z B y R -1 z