Metamath Proof Explorer


Theorem wl-cbvalnaed

Description: wl-cbvalnae with a context. (Contributed by Wolf Lammen, 28-Jul-2019)

Ref Expression
Hypotheses wl-cbvalnaed.1 xφ
wl-cbvalnaed.2 yφ
wl-cbvalnaed.3 φ¬xx=yyψ
wl-cbvalnaed.4 φ¬xx=yxχ
wl-cbvalnaed.5 φx=yψχ
Assertion wl-cbvalnaed φxψyχ

Proof

Step Hyp Ref Expression
1 wl-cbvalnaed.1 xφ
2 wl-cbvalnaed.2 yφ
3 wl-cbvalnaed.3 φ¬xx=yyψ
4 wl-cbvalnaed.4 φ¬xx=yxχ
5 wl-cbvalnaed.5 φx=yψχ
6 1 2 5 wl-dral1d φxx=yxψyχ
7 6 imp φxx=yxψyχ
8 nfnae x¬xx=y
9 1 8 nfan xφ¬xx=y
10 wl-nfnae1 y¬xx=y
11 2 10 nfan yφ¬xx=y
12 3 imp φ¬xx=yyψ
13 4 imp φ¬xx=yxχ
14 5 adantr φ¬xx=yx=yψχ
15 9 11 12 13 14 cbv2 φ¬xx=yxψyχ
16 7 15 pm2.61dan φxψyχ