Metamath Proof Explorer


Theorem wl-mo2t

Description: Closed form of mof . (Contributed by Wolf Lammen, 18-Aug-2019)

Ref Expression
Assertion wl-mo2t xyφ*xφyxφx=y

Proof

Step Hyp Ref Expression
1 df-mo *xφuxφx=u
2 nfnf1 yyφ
3 2 nfal yxyφ
4 nfa1 xxyφ
5 sp xyφyφ
6 nfvd xyφyx=u
7 5 6 nfimd xyφyφx=u
8 4 7 nfald xyφyxφx=u
9 equequ2 u=yx=ux=y
10 9 imbi2d u=yφx=uφx=y
11 10 albidv u=yxφx=uxφx=y
12 11 a1i xyφu=yxφx=uxφx=y
13 3 8 12 cbvexdw xyφuxφx=uyxφx=y
14 1 13 bitrid xyφ*xφyxφx=y