Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-mo2t
Next ⟩
wl-mo3t
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-mo2t
Description:
Closed form of
mof
.
(Contributed by
Wolf Lammen
, 18-Aug-2019)
Ref
Expression
Assertion
wl-mo2t
⊢
∀
x
Ⅎ
y
φ
→
∃
*
x
φ
↔
∃
y
∀
x
φ
→
x
=
y
Proof
Step
Hyp
Ref
Expression
1
df-mo
⊢
∃
*
x
φ
↔
∃
u
∀
x
φ
→
x
=
u
2
nfnf1
⊢
Ⅎ
y
Ⅎ
y
φ
3
2
nfal
⊢
Ⅎ
y
∀
x
Ⅎ
y
φ
4
nfa1
⊢
Ⅎ
x
∀
x
Ⅎ
y
φ
5
sp
⊢
∀
x
Ⅎ
y
φ
→
Ⅎ
y
φ
6
nfvd
⊢
∀
x
Ⅎ
y
φ
→
Ⅎ
y
x
=
u
7
5
6
nfimd
⊢
∀
x
Ⅎ
y
φ
→
Ⅎ
y
φ
→
x
=
u
8
4
7
nfald
⊢
∀
x
Ⅎ
y
φ
→
Ⅎ
y
∀
x
φ
→
x
=
u
9
equequ2
⊢
u
=
y
→
x
=
u
↔
x
=
y
10
9
imbi2d
⊢
u
=
y
→
φ
→
x
=
u
↔
φ
→
x
=
y
11
10
albidv
⊢
u
=
y
→
∀
x
φ
→
x
=
u
↔
∀
x
φ
→
x
=
y
12
11
a1i
⊢
∀
x
Ⅎ
y
φ
→
u
=
y
→
∀
x
φ
→
x
=
u
↔
∀
x
φ
→
x
=
y
13
3
8
12
cbvexdw
⊢
∀
x
Ⅎ
y
φ
→
∃
u
∀
x
φ
→
x
=
u
↔
∃
y
∀
x
φ
→
x
=
y
14
1
13
syl5bb
⊢
∀
x
Ⅎ
y
φ
→
∃
*
x
φ
↔
∃
y
∀
x
φ
→
x
=
y