Metamath Proof Explorer


Theorem wlkonprop

Description: Properties of a walk between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Revised by AV, 31-Dec-2020) (Proof shortened by AV, 16-Jan-2021)

Ref Expression
Hypothesis wlkson.v V=VtxG
Assertion wlkonprop FAWalksOnGBPGVAVBVFVPVFWalksGPP0=APF=B

Proof

Step Hyp Ref Expression
1 wlkson.v V=VtxG
2 1 fvexi VV
3 df-wlkson WalksOn=gVaVtxg,bVtxgfp|fWalksgpp0=apf=b
4 1 wlkson AVBVAWalksOnGB=fp|fWalksGpp0=Apf=B
5 4 3adant1 GVAVBVAWalksOnGB=fp|fWalksGpp0=Apf=B
6 fveq2 g=GVtxg=VtxG
7 6 1 eqtr4di g=GVtxg=V
8 fveq2 g=GWalksg=WalksG
9 8 breqd g=GfWalksgpfWalksGp
10 9 3anbi1d g=GfWalksgpp0=apf=bfWalksGpp0=apf=b
11 3 5 7 7 10 bropfvvvv VVVVFAWalksOnGBPGVAVBVFVPV
12 2 2 11 mp2an FAWalksOnGBPGVAVBVFVPV
13 3anass GVAVBVGVAVBV
14 13 anbi1i GVAVBVFVPVGVAVBVFVPV
15 df-3an GVAVBVFVPVGVAVBVFVPV
16 14 15 bitr4i GVAVBVFVPVGVAVBVFVPV
17 12 16 sylibr FAWalksOnGBPGVAVBVFVPV
18 1 iswlkon AVBVFVPVFAWalksOnGBPFWalksGPP0=APF=B
19 18 3adantl1 GVAVBVFVPVFAWalksOnGBPFWalksGPP0=APF=B
20 19 biimpd GVAVBVFVPVFAWalksOnGBPFWalksGPP0=APF=B
21 20 imdistani GVAVBVFVPVFAWalksOnGBPGVAVBVFVPVFWalksGPP0=APF=B
22 17 21 mpancom FAWalksOnGBPGVAVBVFVPVFWalksGPP0=APF=B
23 df-3an GVAVBVFVPVFWalksGPP0=APF=BGVAVBVFVPVFWalksGPP0=APF=B
24 22 23 sylibr FAWalksOnGBPGVAVBVFVPVFWalksGPP0=APF=B