Metamath Proof Explorer


Theorem wlksnwwlknvbij

Description: There is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length and starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 5-Aug-2022)

Ref Expression
Assertion wlksnwwlknvbij GUSHGraphN0ff:pWalksG|1stp=N2ndp0=X1-1 ontowNWWalksNG|w0=X

Proof

Step Hyp Ref Expression
1 fvex WalksGV
2 1 mptrabex pqWalksG|1stq=N2ndpV
3 2 resex pqWalksG|1stq=N2ndppqWalksG|1stq=N|2ndp0=XV
4 eqid pqWalksG|1stq=N2ndp=pqWalksG|1stq=N2ndp
5 eqid qWalksG|1stq=N=qWalksG|1stq=N
6 eqid NWWalksNG=NWWalksNG
7 5 6 4 wlknwwlksnbij GUSHGraphN0pqWalksG|1stq=N2ndp:qWalksG|1stq=N1-1 ontoNWWalksNG
8 fveq1 w=2ndpw0=2ndp0
9 8 eqeq1d w=2ndpw0=X2ndp0=X
10 9 3ad2ant3 GUSHGraphN0pqWalksG|1stq=Nw=2ndpw0=X2ndp0=X
11 4 7 10 f1oresrab GUSHGraphN0pqWalksG|1stq=N2ndppqWalksG|1stq=N|2ndp0=X:pqWalksG|1stq=N|2ndp0=X1-1 ontowNWWalksNG|w0=X
12 f1oeq1 f=pqWalksG|1stq=N2ndppqWalksG|1stq=N|2ndp0=Xf:pqWalksG|1stq=N|2ndp0=X1-1 ontowNWWalksNG|w0=XpqWalksG|1stq=N2ndppqWalksG|1stq=N|2ndp0=X:pqWalksG|1stq=N|2ndp0=X1-1 ontowNWWalksNG|w0=X
13 12 spcegv pqWalksG|1stq=N2ndppqWalksG|1stq=N|2ndp0=XVpqWalksG|1stq=N2ndppqWalksG|1stq=N|2ndp0=X:pqWalksG|1stq=N|2ndp0=X1-1 ontowNWWalksNG|w0=Xff:pqWalksG|1stq=N|2ndp0=X1-1 ontowNWWalksNG|w0=X
14 3 11 13 mpsyl GUSHGraphN0ff:pqWalksG|1stq=N|2ndp0=X1-1 ontowNWWalksNG|w0=X
15 2fveq3 p=q1stp=1stq
16 15 eqeq1d p=q1stp=N1stq=N
17 16 rabrabi pqWalksG|1stq=N|2ndp0=X=pWalksG|1stp=N2ndp0=X
18 17 eqcomi pWalksG|1stp=N2ndp0=X=pqWalksG|1stq=N|2ndp0=X
19 f1oeq2 pWalksG|1stp=N2ndp0=X=pqWalksG|1stq=N|2ndp0=Xf:pWalksG|1stp=N2ndp0=X1-1 ontowNWWalksNG|w0=Xf:pqWalksG|1stq=N|2ndp0=X1-1 ontowNWWalksNG|w0=X
20 18 19 mp1i GUSHGraphN0f:pWalksG|1stp=N2ndp0=X1-1 ontowNWWalksNG|w0=Xf:pqWalksG|1stq=N|2ndp0=X1-1 ontowNWWalksNG|w0=X
21 20 exbidv GUSHGraphN0ff:pWalksG|1stp=N2ndp0=X1-1 ontowNWWalksNG|w0=Xff:pqWalksG|1stq=N|2ndp0=X1-1 ontowNWWalksNG|w0=X
22 14 21 mpbird GUSHGraphN0ff:pWalksG|1stp=N2ndp0=X1-1 ontowNWWalksNG|w0=X