Metamath Proof Explorer


Theorem wsuccl

Description: If X is a set with an R successor in A , then its well-founded successor is a member of A . (Contributed by Scott Fenton, 15-Jun-2018) (Proof shortened by AV, 10-Oct-2021)

Ref Expression
Hypotheses wsuccl.1 φRWeA
wsuccl.2 φRSeA
wsuccl.3 φXV
wsuccl.4 φyAXRy
Assertion wsuccl φwsucRAXA

Proof

Step Hyp Ref Expression
1 wsuccl.1 φRWeA
2 wsuccl.2 φRSeA
3 wsuccl.3 φXV
4 wsuccl.4 φyAXRy
5 df-wsuc wsucRAX=supPredR-1AXAR
6 weso RWeAROrA
7 1 6 syl φROrA
8 1 2 3 4 wsuclem φaAbPredR-1AX¬bRabAaRbcPredR-1AXcRb
9 7 8 infcl φsupPredR-1AXARA
10 5 9 eqeltrid φwsucRAXA