Metamath Proof Explorer


Theorem wunfi

Description: A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 φUWUni
wunfi.2 φAU
wunfi.3 φAFin
Assertion wunfi φAU

Proof

Step Hyp Ref Expression
1 wun0.1 φUWUni
2 wunfi.2 φAU
3 wunfi.3 φAFin
4 sseq1 x=xUU
5 eleq1 x=xUU
6 4 5 imbi12d x=xUxUUU
7 6 imbi2d x=φxUxUφUU
8 sseq1 x=yxUyU
9 eleq1 x=yxUyU
10 8 9 imbi12d x=yxUxUyUyU
11 10 imbi2d x=yφxUxUφyUyU
12 sseq1 x=yzxUyzU
13 eleq1 x=yzxUyzU
14 12 13 imbi12d x=yzxUxUyzUyzU
15 14 imbi2d x=yzφxUxUφyzUyzU
16 sseq1 x=AxUAU
17 eleq1 x=AxUAU
18 16 17 imbi12d x=AxUxUAUAU
19 18 imbi2d x=AφxUxUφAUAU
20 1 wun0 φU
21 20 a1d φUU
22 ssun1 yyz
23 sstr yyzyzUyU
24 22 23 mpan yzUyU
25 24 imim1i yUyUyzUyU
26 1 adantr φyzUyUUWUni
27 simprr φyzUyUyU
28 simprl φyzUyUyzU
29 28 unssbd φyzUyUzU
30 vex zV
31 30 snss zUzU
32 29 31 sylibr φyzUyUzU
33 26 32 wunsn φyzUyUzU
34 26 27 33 wunun φyzUyUyzU
35 34 exp32 φyzUyUyzU
36 35 a2d φyzUyUyzUyzU
37 25 36 syl5 φyUyUyzUyzU
38 37 a2i φyUyUφyzUyzU
39 38 a1i yFinφyUyUφyzUyzU
40 7 11 15 19 21 39 findcard2 AFinφAUAU
41 3 40 mpcom φAUAU
42 2 41 mpd φAU