Metamath Proof Explorer


Theorem xlimclim

Description: Given a sequence of reals, it converges to a real number A w.r.t. the standard topology on the reals, if and only if it converges to A w.r.t. to the standard topology on the extended reals (see climreeq ). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimclim.m φM
xlimclim.z Z=M
xlimclim.f φF:Z
xlimclim.a φA
Assertion xlimclim φF*AFA

Proof

Step Hyp Ref Expression
1 xlimclim.m φM
2 xlimclim.z Z=M
3 xlimclim.f φF:Z
4 xlimclim.a φA
5 df-xlim *=tordTop
6 5 breqi F*AFtordTopA
7 6 a1i φF*AFtordTopA
8 xrtgioo2 topGenran.=ordTop𝑡
9 reex V
10 9 a1i φV
11 letop ordTopTop
12 11 a1i φordTopTop
13 8 2 10 12 4 1 3 lmss φFtordTopAFttopGenran.A
14 eqid ttopGenran.=ttopGenran.
15 14 2 1 3 climreeq φFttopGenran.AFA
16 7 13 15 3bitrd φF*AFA