Metamath Proof Explorer


Theorem xlimclimdm

Description: A sequence of extended reals that converges to a real w.r.t. the standard topology on the extended reals, also converges w.r.t. to the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimclimdm.1 φM
xlimclimdm.2 Z=M
xlimclimdm.3 φF:Z*
xlimclimdm.4 φF*A
xlimclimdm.5 φA
Assertion xlimclimdm φFdom

Proof

Step Hyp Ref Expression
1 xlimclimdm.1 φM
2 xlimclimdm.2 Z=M
3 xlimclimdm.3 φF:Z*
4 xlimclimdm.4 φF*A
5 xlimclimdm.5 φA
6 climrel Rel
7 1 2 3 5 xlimclim2 φF*AFA
8 4 7 mpbid φFA
9 releldm RelFAFdom
10 6 8 9 sylancr φFdom