Description: A sequence of extended reals converges if and only if its superior limit is smaller than or equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlimlimsupleliminf.1 | |
|
xlimlimsupleliminf.2 | |
||
xlimlimsupleliminf.3 | |
||
Assertion | xlimlimsupleliminf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimlimsupleliminf.1 | |
|
2 | xlimlimsupleliminf.2 | |
|
3 | xlimlimsupleliminf.3 | |
|
4 | 1 2 3 | xlimliminflimsup | |
5 | 1 2 3 | liminfgelimsupuz | |
6 | 4 5 | bitr4d | |