Metamath Proof Explorer


Theorem xlimlimsupleliminf

Description: A sequence of extended reals converges if and only if its superior limit is smaller than or equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Dec-2023)

Ref Expression
Hypotheses xlimlimsupleliminf.1 φM
xlimlimsupleliminf.2 Z=M
xlimlimsupleliminf.3 φF:Z*
Assertion xlimlimsupleliminf φFdom*lim supFlim infF

Proof

Step Hyp Ref Expression
1 xlimlimsupleliminf.1 φM
2 xlimlimsupleliminf.2 Z=M
3 xlimlimsupleliminf.3 φF:Z*
4 1 2 3 xlimliminflimsup φFdom*lim infF=lim supF
5 1 2 3 liminfgelimsupuz φlim supFlim infFlim infF=lim supF
6 4 5 bitr4d φFdom*lim supFlim infF