Metamath Proof Explorer


Theorem xlimmnflimsup2

Description: A sequence of extended reals converges to -oo if and only if its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimmnflimsup2.m φ M
xlimmnflimsup2.z Z = M
xlimmnflimsup2.f φ F : Z *
Assertion xlimmnflimsup2 φ F * −∞ lim sup F = −∞

Proof

Step Hyp Ref Expression
1 xlimmnflimsup2.m φ M
2 xlimmnflimsup2.z Z = M
3 xlimmnflimsup2.f φ F : Z *
4 1 2 3 xlimmnfv φ F * −∞ x k Z j k F j x
5 nfcv _ j F
6 5 1 2 3 limsupmnfuz φ lim sup F = −∞ x k Z j k F j x
7 4 6 bitr4d φ F * −∞ lim sup F = −∞