Metamath Proof Explorer


Theorem xmetlecl

Description: Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmetlecl D∞MetXAXBXCADBCADB

Proof

Step Hyp Ref Expression
1 xmetcl D∞MetXAXBXADB*
2 1 3expb D∞MetXAXBXADB*
3 2 3adant3 D∞MetXAXBXCADBCADB*
4 simp3l D∞MetXAXBXCADBCC
5 xmetge0 D∞MetXAXBX0ADB
6 5 3expb D∞MetXAXBX0ADB
7 6 3adant3 D∞MetXAXBXCADBC0ADB
8 simp3r D∞MetXAXBXCADBCADBC
9 xrrege0 ADB*C0ADBADBCADB
10 3 4 7 8 9 syl22anc D∞MetXAXBXCADBCADB