Metamath Proof Explorer


Theorem xmulmnf1

Description: Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulmnf1 A*0<AA𝑒−∞=−∞

Proof

Step Hyp Ref Expression
1 xnegpnf +∞=−∞
2 1 oveq2i A𝑒+∞=A𝑒−∞
3 simpl A*0<AA*
4 pnfxr +∞*
5 xmulneg2 A*+∞*A𝑒+∞=A𝑒+∞
6 3 4 5 sylancl A*0<AA𝑒+∞=A𝑒+∞
7 xmulpnf1 A*0<AA𝑒+∞=+∞
8 xnegeq A𝑒+∞=+∞A𝑒+∞=+∞
9 7 8 syl A*0<AA𝑒+∞=+∞
10 9 1 eqtrdi A*0<AA𝑒+∞=−∞
11 6 10 eqtrd A*0<AA𝑒+∞=−∞
12 2 11 eqtr3id A*0<AA𝑒−∞=−∞