Metamath Proof Explorer


Theorem xnn0gt0

Description: Nonzero extended nonnegative integers are strictly greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion xnn0gt0 N0*N00<N

Proof

Step Hyp Ref Expression
1 elxnn0 N0*N0N=+∞
2 elnnne0 NN0N0
3 nngt0 N0<N
4 2 3 sylbir N0N00<N
5 4 ancoms N0N00<N
6 5 adantll N0N=+∞N0N00<N
7 0ltpnf 0<+∞
8 breq2 N=+∞0<N0<+∞
9 7 8 mpbiri N=+∞0<N
10 9 adantl N0N=+∞N0N=+∞0<N
11 simpl N0N=+∞N0N0N=+∞
12 6 10 11 mpjaodan N0N=+∞N00<N
13 1 12 sylanb N0*N00<N