Metamath Proof Explorer


Theorem xpab

Description: Cartesian product of two class abstractions. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion xpab x|φ×y|ψ=xy|φψ

Proof

Step Hyp Ref Expression
1 relxp Relx|φ×y|ψ
2 relopabv Relxy|φψ
3 df-clab ax|φaxφ
4 df-clab by|ψbyψ
5 3 4 anbi12i ax|φby|ψaxφbyψ
6 sban byφψbyφbyψ
7 sbsbc byφψ[˙b/y]˙φψ
8 sbv byφφ
9 8 anbi1i byφbyψφbyψ
10 6 7 9 3bitr3i [˙b/y]˙φψφbyψ
11 10 sbbii ax[˙b/y]˙φψaxφbyψ
12 sbsbc ax[˙b/y]˙φψ[˙a/x]˙[˙b/y]˙φψ
13 sban axφbyψaxφaxbyψ
14 sbv axbyψbyψ
15 14 anbi2i axφaxbyψaxφbyψ
16 13 15 bitri axφbyψaxφbyψ
17 11 12 16 3bitr3i [˙a/x]˙[˙b/y]˙φψaxφbyψ
18 5 17 bitr4i ax|φby|ψ[˙a/x]˙[˙b/y]˙φψ
19 brxp ax|φ×y|ψbax|φby|ψ
20 eqid xy|φψ=xy|φψ
21 20 brabsb axy|φψb[˙a/x]˙[˙b/y]˙φψ
22 18 19 21 3bitr4i ax|φ×y|ψbaxy|φψb
23 1 2 22 eqbrriv x|φ×y|ψ=xy|φψ