Metamath Proof Explorer


Theorem xpccat

Description: The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpccat.t T = C × c D
xpccat.c φ C Cat
xpccat.d φ D Cat
Assertion xpccat φ T Cat

Proof

Step Hyp Ref Expression
1 xpccat.t T = C × c D
2 xpccat.c φ C Cat
3 xpccat.d φ D Cat
4 eqid Base C = Base C
5 eqid Base D = Base D
6 eqid Id C = Id C
7 eqid Id D = Id D
8 1 2 3 4 5 6 7 xpccatid φ T Cat Id T = x Base C , y Base D Id C x Id D y
9 8 simpld φ T Cat