Metamath Proof Explorer


Theorem xpccofval

Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses xpccofval.t T=C×cD
xpccofval.b B=BaseT
xpccofval.k K=HomT
xpccofval.o1 ·˙=compC
xpccofval.o2 ˙=compD
xpccofval.o O=compT
Assertion xpccofval O=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf

Proof

Step Hyp Ref Expression
1 xpccofval.t T=C×cD
2 xpccofval.b B=BaseT
3 xpccofval.k K=HomT
4 xpccofval.o1 ·˙=compC
5 xpccofval.o2 ˙=compD
6 xpccofval.o O=compT
7 eqid BaseC=BaseC
8 eqid BaseD=BaseD
9 eqid HomC=HomC
10 eqid HomD=HomD
11 simpl CVDVCV
12 simpr CVDVDV
13 1 7 8 xpcbas BaseC×BaseD=BaseT
14 2 13 eqtr4i B=BaseC×BaseD
15 14 a1i CVDVB=BaseC×BaseD
16 1 2 9 10 3 xpchomfval K=uB,vB1stuHomC1stv×2nduHomD2ndv
17 16 a1i CVDVK=uB,vB1stuHomC1stv×2nduHomD2ndv
18 eqidd CVDVxB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
19 1 7 8 9 10 4 5 11 12 15 17 18 xpcval CVDVT=BasendxBHomndxKcompndxxB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
20 catstr BasendxBHomndxKcompndxxB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndfStruct115
21 ccoid comp=Slotcompndx
22 snsstp3 compndxxB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndfBasendxBHomndxKcompndxxB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
23 2 fvexi BV
24 23 23 xpex B×BV
25 24 23 mpoex xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndfV
26 25 a1i CVDVxB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndfV
27 19 20 21 22 26 6 strfv3 CVDVO=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
28 fnxpc ×cFnV×V
29 28 fndmi dom×c=V×V
30 29 ndmov ¬CVDVC×cD=
31 1 30 eqtrid ¬CVDVT=
32 31 fveq2d ¬CVDVcompT=comp
33 21 str0 =comp
34 32 6 33 3eqtr4g ¬CVDVO=
35 31 fveq2d ¬CVDVBaseT=Base
36 base0 =Base
37 35 2 36 3eqtr4g ¬CVDVB=
38 37 olcd ¬CVDVB×B=B=
39 0mpo0 B×B=B=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf=
40 38 39 syl ¬CVDVxB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf=
41 34 40 eqtr4d ¬CVDVO=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf
42 27 41 pm2.61i O=xB×B,yBg2ndxKy,fKx1stg1st1stx1st2ndx·˙1sty1stf2ndg2nd1stx2nd2ndx˙2ndy2ndf