Metamath Proof Explorer


Theorem xpco

Description: Composition of two Cartesian products. (Contributed by Thierry Arnoux, 17-Nov-2017)

Ref Expression
Assertion xpco BB×CA×B=A×C

Proof

Step Hyp Ref Expression
1 n0 ByyB
2 1 biimpi ByyB
3 2 biantrurd BxAzCyyBxAzC
4 ancom xAyByBxA
5 4 anbi1i xAyByBzCyBxAyBzC
6 brxp xA×ByxAyB
7 brxp yB×CzyBzC
8 6 7 anbi12i xA×ByyB×CzxAyByBzC
9 anandi yBxAzCyBxAyBzC
10 5 8 9 3bitr4i xA×ByyB×CzyBxAzC
11 10 exbii yxA×ByyB×CzyyBxAzC
12 19.41v yyBxAzCyyBxAzC
13 11 12 bitr2i yyBxAzCyxA×ByyB×Cz
14 3 13 bitr2di ByxA×ByyB×CzxAzC
15 14 opabbidv Bxz|yxA×ByyB×Cz=xz|xAzC
16 df-co B×CA×B=xz|yxA×ByyB×Cz
17 df-xp A×C=xz|xAzC
18 15 16 17 3eqtr4g BB×CA×B=A×C