Metamath Proof Explorer


Theorem xpexr

Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion xpexr A×BCAVBV

Proof

Step Hyp Ref Expression
1 0ex V
2 eleq1 A=AVV
3 1 2 mpbiri A=AV
4 3 pm2.24d A=¬AVBV
5 4 a1d A=A×BC¬AVBV
6 rnexg A×BCranA×BV
7 rnxp AranA×B=B
8 7 eleq1d AranA×BVBV
9 6 8 imbitrid AA×BCBV
10 9 a1dd AA×BC¬AVBV
11 5 10 pm2.61ine A×BC¬AVBV
12 11 orrd A×BCAVBV