Metamath Proof Explorer


Theorem xpsrnbas

Description: The indexed structure product that appears in xpsval has the same base as the target of the function F . (Contributed by Mario Carneiro, 15-Aug-2015) (Revised by Jim Kingdon, 25-Sep-2023)

Ref Expression
Hypotheses xpsval.t T=R×𝑠S
xpsval.x X=BaseR
xpsval.y Y=BaseS
xpsval.1 φRV
xpsval.2 φSW
xpsval.f F=xX,yYx1𝑜y
xpsval.k G=ScalarR
xpsval.u U=G𝑠R1𝑜S
Assertion xpsrnbas φranF=BaseU

Proof

Step Hyp Ref Expression
1 xpsval.t T=R×𝑠S
2 xpsval.x X=BaseR
3 xpsval.y Y=BaseS
4 xpsval.1 φRV
5 xpsval.2 φSW
6 xpsval.f F=xX,yYx1𝑜y
7 xpsval.k G=ScalarR
8 xpsval.u U=G𝑠R1𝑜S
9 eqid BaseU=BaseU
10 7 fvexi GV
11 10 a1i φGV
12 2on 2𝑜On
13 12 a1i φ2𝑜On
14 fnpr2o RVSWR1𝑜SFn2𝑜
15 4 5 14 syl2anc φR1𝑜SFn2𝑜
16 8 9 11 13 15 prdsbas2 φBaseU=k2𝑜BaseR1𝑜Sk
17 fvprif RVSWk2𝑜R1𝑜Sk=ifk=RS
18 17 3expia RVSWk2𝑜R1𝑜Sk=ifk=RS
19 4 5 18 syl2anc φk2𝑜R1𝑜Sk=ifk=RS
20 19 imp φk2𝑜R1𝑜Sk=ifk=RS
21 20 fveq2d φk2𝑜BaseR1𝑜Sk=Baseifk=RS
22 ifeq12 X=BaseRY=BaseSifk=XY=ifk=BaseRBaseS
23 2 3 22 mp2an ifk=XY=ifk=BaseRBaseS
24 fvif Baseifk=RS=ifk=BaseRBaseS
25 23 24 eqtr4i ifk=XY=Baseifk=RS
26 21 25 eqtr4di φk2𝑜BaseR1𝑜Sk=ifk=XY
27 26 ixpeq2dva φk2𝑜BaseR1𝑜Sk=k2𝑜ifk=XY
28 6 xpsfrn ranF=k2𝑜ifk=XY
29 27 28 eqtr4di φk2𝑜BaseR1𝑜Sk=ranF
30 16 29 eqtr2d φranF=BaseU