Metamath Proof Explorer


Theorem xpstps

Description: A binary product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypothesis xpstps.t T = R × 𝑠 S
Assertion xpstps R TopSp S TopSp T TopSp

Proof

Step Hyp Ref Expression
1 xpstps.t T = R × 𝑠 S
2 eqid Base R = Base R
3 eqid Base S = Base S
4 simpl R TopSp S TopSp R TopSp
5 simpr R TopSp S TopSp S TopSp
6 eqid x Base R , y Base S x 1 𝑜 y = x Base R , y Base S x 1 𝑜 y
7 eqid Scalar R = Scalar R
8 eqid Scalar R 𝑠 R 1 𝑜 S = Scalar R 𝑠 R 1 𝑜 S
9 1 2 3 4 5 6 7 8 xpsval R TopSp S TopSp T = x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S
10 1 2 3 4 5 6 7 8 xpsrnbas R TopSp S TopSp ran x Base R , y Base S x 1 𝑜 y = Base Scalar R 𝑠 R 1 𝑜 S
11 6 xpsff1o2 x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y
12 11 a1i R TopSp S TopSp x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y
13 f1ocnv x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y x Base R , y Base S x 1 𝑜 y -1 : ran x Base R , y Base S x 1 𝑜 y 1-1 onto Base R × Base S
14 f1ofo x Base R , y Base S x 1 𝑜 y -1 : ran x Base R , y Base S x 1 𝑜 y 1-1 onto Base R × Base S x Base R , y Base S x 1 𝑜 y -1 : ran x Base R , y Base S x 1 𝑜 y onto Base R × Base S
15 12 13 14 3syl R TopSp S TopSp x Base R , y Base S x 1 𝑜 y -1 : ran x Base R , y Base S x 1 𝑜 y onto Base R × Base S
16 fvexd R TopSp S TopSp Scalar R V
17 2on 2 𝑜 On
18 17 a1i R TopSp S TopSp 2 𝑜 On
19 xpscf R 1 𝑜 S : 2 𝑜 TopSp R TopSp S TopSp
20 19 biimpri R TopSp S TopSp R 1 𝑜 S : 2 𝑜 TopSp
21 8 16 18 20 prdstps R TopSp S TopSp Scalar R 𝑠 R 1 𝑜 S TopSp
22 9 10 15 21 imastps R TopSp S TopSp T TopSp