Metamath Proof Explorer


Theorem xpsval

Description: Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Jim Kingdon, 25-Sep-2023)

Ref Expression
Hypotheses xpsval.t T=R×𝑠S
xpsval.x X=BaseR
xpsval.y Y=BaseS
xpsval.1 φRV
xpsval.2 φSW
xpsval.f F=xX,yYx1𝑜y
xpsval.k G=ScalarR
xpsval.u U=G𝑠R1𝑜S
Assertion xpsval φT=F-1𝑠U

Proof

Step Hyp Ref Expression
1 xpsval.t T=R×𝑠S
2 xpsval.x X=BaseR
3 xpsval.y Y=BaseS
4 xpsval.1 φRV
5 xpsval.2 φSW
6 xpsval.f F=xX,yYx1𝑜y
7 xpsval.k G=ScalarR
8 xpsval.u U=G𝑠R1𝑜S
9 4 elexd φRV
10 5 elexd φSV
11 fveq2 r=RBaser=BaseR
12 11 2 eqtr4di r=RBaser=X
13 fveq2 s=SBases=BaseS
14 13 3 eqtr4di s=SBases=Y
15 mpoeq12 Baser=XBases=YxBaser,yBasesx1𝑜y=xX,yYx1𝑜y
16 12 14 15 syl2an r=Rs=SxBaser,yBasesx1𝑜y=xX,yYx1𝑜y
17 16 6 eqtr4di r=Rs=SxBaser,yBasesx1𝑜y=F
18 17 cnveqd r=Rs=SxBaser,yBasesx1𝑜y-1=F-1
19 fveq2 r=RScalarr=ScalarR
20 19 adantr r=Rs=SScalarr=ScalarR
21 20 7 eqtr4di r=Rs=SScalarr=G
22 simpl r=Rs=Sr=R
23 22 opeq2d r=Rs=Sr=R
24 simpr r=Rs=Ss=S
25 24 opeq2d r=Rs=S1𝑜s=1𝑜S
26 23 25 preq12d r=Rs=Sr1𝑜s=R1𝑜S
27 21 26 oveq12d r=Rs=SScalarr𝑠r1𝑜s=G𝑠R1𝑜S
28 27 8 eqtr4di r=Rs=SScalarr𝑠r1𝑜s=U
29 18 28 oveq12d r=Rs=SxBaser,yBasesx1𝑜y-1𝑠Scalarr𝑠r1𝑜s=F-1𝑠U
30 df-xps ×𝑠=rV,sVxBaser,yBasesx1𝑜y-1𝑠Scalarr𝑠r1𝑜s
31 ovex F-1𝑠UV
32 29 30 31 ovmpoa RVSVR×𝑠S=F-1𝑠U
33 9 10 32 syl2anc φR×𝑠S=F-1𝑠U
34 1 33 eqtrid φT=F-1𝑠U