Metamath Proof Explorer


Theorem xptrrel

Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion xptrrel A×BA×BA×B

Proof

Step Hyp Ref Expression
1 inss1 domA×BranA×BdomA×B
2 dmxpss domA×BA
3 1 2 sstri domA×BranA×BA
4 inss2 domA×BranA×BranA×B
5 rnxpss ranA×BB
6 4 5 sstri domA×BranA×BB
7 3 6 ssini domA×BranA×BAB
8 eqimss AB=AB
9 7 8 sstrid AB=domA×BranA×B
10 ss0 domA×BranA×BdomA×BranA×B=
11 9 10 syl AB=domA×BranA×B=
12 11 coemptyd AB=A×BA×B=
13 0ss A×B
14 12 13 eqsstrdi AB=A×BA×BA×B
15 neqne ¬AB=AB
16 15 xpcoidgend ¬AB=A×BA×B=A×B
17 ssid A×BA×B
18 16 17 eqsstrdi ¬AB=A×BA×BA×B
19 14 18 pm2.61i A×BA×BA×B