Metamath Proof Explorer


Theorem xrdifh

Description: Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017)

Ref Expression
Hypothesis xrdifh.1 A*
Assertion xrdifh *A+∞=−∞A

Proof

Step Hyp Ref Expression
1 xrdifh.1 A*
2 biortn x*¬Ax¬x+∞¬x*¬Ax¬x+∞
3 pnfge x*x+∞
4 3 notnotd x*¬¬x+∞
5 biorf ¬¬x+∞¬Ax¬x+∞¬Ax
6 4 5 syl x*¬Ax¬x+∞¬Ax
7 orcom ¬Ax¬x+∞¬x+∞¬Ax
8 6 7 bitr4di x*¬Ax¬Ax¬x+∞
9 pnfxr +∞*
10 elicc1 A*+∞*xA+∞x*Axx+∞
11 1 9 10 mp2an xA+∞x*Axx+∞
12 11 notbii ¬xA+∞¬x*Axx+∞
13 3ianor ¬x*Axx+∞¬x*¬Ax¬x+∞
14 3orass ¬x*¬Ax¬x+∞¬x*¬Ax¬x+∞
15 12 13 14 3bitri ¬xA+∞¬x*¬Ax¬x+∞
16 15 a1i x*¬xA+∞¬x*¬Ax¬x+∞
17 2 8 16 3bitr4rd x*¬xA+∞¬Ax
18 xrltnle x*A*x<A¬Ax
19 1 18 mpan2 x*x<A¬Ax
20 17 19 bitr4d x*¬xA+∞x<A
21 20 pm5.32i x*¬xA+∞x*x<A
22 eldif x*A+∞x*¬xA+∞
23 3anass x*−∞xx<Ax*−∞xx<A
24 mnfxr −∞*
25 elico1 −∞*A*x−∞Ax*−∞xx<A
26 24 1 25 mp2an x−∞Ax*−∞xx<A
27 mnfle x*−∞x
28 27 biantrurd x*x<A−∞xx<A
29 28 pm5.32i x*x<Ax*−∞xx<A
30 23 26 29 3bitr4i x−∞Ax*x<A
31 21 22 30 3bitr4i x*A+∞x−∞A
32 31 eqriv *A+∞=−∞A