Metamath Proof Explorer


Theorem xrgtnelicc

Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses xrgtnelicc.1 φA*
xrgtnelicc.2 φB*
xrgtnelicc.3 φC*
xrgtnelicc.4 φB<C
Assertion xrgtnelicc φ¬CAB

Proof

Step Hyp Ref Expression
1 xrgtnelicc.1 φA*
2 xrgtnelicc.2 φB*
3 xrgtnelicc.3 φC*
4 xrgtnelicc.4 φB<C
5 xrltnle B*C*B<C¬CB
6 2 3 5 syl2anc φB<C¬CB
7 4 6 mpbid φ¬CB
8 7 intnand φ¬ACCB
9 elicc4 A*B*C*CABACCB
10 1 2 3 9 syl3anc φCABACCB
11 8 10 mtbird φ¬CAB