Metamath Proof Explorer


Theorem xrltletr

Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrltletr A*B*C*A<BBCA<C

Proof

Step Hyp Ref Expression
1 xrleloe B*C*BCB<CB=C
2 1 3adant1 A*B*C*BCB<CB=C
3 xrlttr A*B*C*A<BB<CA<C
4 3 expcomd A*B*C*B<CA<BA<C
5 breq2 B=CA<BA<C
6 5 biimpd B=CA<BA<C
7 6 a1i A*B*C*B=CA<BA<C
8 4 7 jaod A*B*C*B<CB=CA<BA<C
9 2 8 sylbid A*B*C*BCA<BA<C
10 9 impcomd A*B*C*A<BBCA<C