Metamath Proof Explorer


Theorem xrlttri5d

Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses xrlttri5d.a φA*
xrlttri5d.b φB*
xrlttri5d.aneb φAB
xrlttri5d.nlt φ¬B<A
Assertion xrlttri5d φA<B

Proof

Step Hyp Ref Expression
1 xrlttri5d.a φA*
2 xrlttri5d.b φB*
3 xrlttri5d.aneb φAB
4 xrlttri5d.nlt φ¬B<A
5 3 neneqd φ¬A=B
6 xrlttri3 A*B*A=B¬A<B¬B<A
7 1 2 6 syl2anc φA=B¬A<B¬B<A
8 5 7 mtbid φ¬¬A<B¬B<A
9 oran A<BB<A¬¬A<B¬B<A
10 8 9 sylibr φA<BB<A
11 10 4 jca φA<BB<A¬B<A
12 pm5.61 A<BB<A¬B<AA<B¬B<A
13 11 12 sylib φA<B¬B<A
14 13 simpld φA<B