Metamath Proof Explorer


Theorem xrlttri5d

Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses xrlttri5d.a φ A *
xrlttri5d.b φ B *
xrlttri5d.aneb φ A B
xrlttri5d.nlt φ ¬ B < A
Assertion xrlttri5d φ A < B

Proof

Step Hyp Ref Expression
1 xrlttri5d.a φ A *
2 xrlttri5d.b φ B *
3 xrlttri5d.aneb φ A B
4 xrlttri5d.nlt φ ¬ B < A
5 3 neneqd φ ¬ A = B
6 xrlttri3 A * B * A = B ¬ A < B ¬ B < A
7 1 2 6 syl2anc φ A = B ¬ A < B ¬ B < A
8 5 7 mtbid φ ¬ ¬ A < B ¬ B < A
9 oran A < B B < A ¬ ¬ A < B ¬ B < A
10 8 9 sylibr φ A < B B < A
11 10 4 jca φ A < B B < A ¬ B < A
12 pm5.61 A < B B < A ¬ B < A A < B ¬ B < A
13 11 12 sylib φ A < B ¬ B < A
14 13 simpld φ A < B