Metamath Proof Explorer


Theorem xrmaxle

Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion xrmaxle A*B*C*ifABBACACBC

Proof

Step Hyp Ref Expression
1 xrmax1 A*B*AifABBA
2 1 3adant3 A*B*C*AifABBA
3 ifcl B*A*ifABBA*
4 3 ancoms A*B*ifABBA*
5 4 3adant3 A*B*C*ifABBA*
6 xrletr A*ifABBA*C*AifABBAifABBACAC
7 5 6 syld3an2 A*B*C*AifABBAifABBACAC
8 2 7 mpand A*B*C*ifABBACAC
9 xrmax2 A*B*BifABBA
10 9 3adant3 A*B*C*BifABBA
11 simp2 A*B*C*B*
12 simp3 A*B*C*C*
13 xrletr B*ifABBA*C*BifABBAifABBACBC
14 11 5 12 13 syl3anc A*B*C*BifABBAifABBACBC
15 10 14 mpand A*B*C*ifABBACBC
16 8 15 jcad A*B*C*ifABBACACBC
17 breq1 B=ifABBABCifABBAC
18 breq1 A=ifABBAACifABBAC
19 17 18 ifboth BCACifABBAC
20 19 ancoms ACBCifABBAC
21 16 20 impbid1 A*B*C*ifABBACACBC