Metamath Proof Explorer


Theorem xrsinvgval

Description: The inversion operation in the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass and df-xrs ), however it has an inversion operation. (Contributed by Thierry Arnoux, 13-Jun-2017)

Ref Expression
Assertion xrsinvgval B*invg𝑠*B=B

Proof

Step Hyp Ref Expression
1 xrsbas *=Base𝑠*
2 xrsadd +𝑒=+𝑠*
3 xrs0 0=0𝑠*
4 eqid invg𝑠*=invg𝑠*
5 1 2 3 4 grpinvval B*invg𝑠*B=ιx*|x+𝑒B=0
6 xnegcl B*B*
7 xaddeq0 x*B*x+𝑒B=0x=B
8 7 ancoms B*x*x+𝑒B=0x=B
9 6 8 riota5 B*ιx*|x+𝑒B=0=B
10 5 9 eqtrd B*invg𝑠*B=B