| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|
| 2 |
|
simpll |
|
| 3 |
2
|
rexrd |
|
| 4 |
|
xnegneg |
|
| 5 |
3 4
|
syl |
|
| 6 |
3
|
xnegcld |
|
| 7 |
|
xaddlid |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
simplr |
|
| 10 |
|
xaddcom |
|
| 11 |
3 9 10
|
syl2anc |
|
| 12 |
11
|
oveq1d |
|
| 13 |
|
simpr |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
xpncan |
|
| 16 |
15
|
ancoms |
|
| 17 |
16
|
adantr |
|
| 18 |
12 14 17
|
3eqtr3d |
|
| 19 |
8 18
|
eqtr3d |
|
| 20 |
|
xnegeq |
|
| 21 |
19 20
|
syl |
|
| 22 |
5 21
|
eqtr3d |
|
| 23 |
22
|
ex |
|
| 24 |
|
simpll |
|
| 25 |
|
simplr |
|
| 26 |
24
|
oveq1d |
|
| 27 |
|
simpr |
|
| 28 |
26 27
|
eqtr3d |
|
| 29 |
|
0re |
|
| 30 |
|
renepnf |
|
| 31 |
29 30
|
mp1i |
|
| 32 |
28 31
|
eqnetrd |
|
| 33 |
32
|
neneqd |
|
| 34 |
|
xaddpnf2 |
|
| 35 |
34
|
stoic1a |
|
| 36 |
25 33 35
|
syl2anc |
|
| 37 |
|
nne |
|
| 38 |
36 37
|
sylib |
|
| 39 |
|
xnegeq |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
xnegmnf |
|
| 42 |
40 41
|
eqtr2di |
|
| 43 |
24 42
|
eqtrd |
|
| 44 |
43
|
ex |
|
| 45 |
|
simpll |
|
| 46 |
|
simplr |
|
| 47 |
45
|
oveq1d |
|
| 48 |
|
simpr |
|
| 49 |
47 48
|
eqtr3d |
|
| 50 |
|
renemnf |
|
| 51 |
29 50
|
mp1i |
|
| 52 |
49 51
|
eqnetrd |
|
| 53 |
52
|
neneqd |
|
| 54 |
|
xaddmnf2 |
|
| 55 |
54
|
stoic1a |
|
| 56 |
46 53 55
|
syl2anc |
|
| 57 |
|
nne |
|
| 58 |
56 57
|
sylib |
|
| 59 |
|
xnegeq |
|
| 60 |
58 59
|
syl |
|
| 61 |
|
xnegpnf |
|
| 62 |
60 61
|
eqtr2di |
|
| 63 |
45 62
|
eqtrd |
|
| 64 |
63
|
ex |
|
| 65 |
23 44 64
|
3jaoian |
|
| 66 |
1 65
|
sylanb |
|
| 67 |
|
simpr |
|
| 68 |
67
|
oveq1d |
|
| 69 |
|
xnegcl |
|
| 70 |
69
|
ad2antlr |
|
| 71 |
|
simplr |
|
| 72 |
|
xaddcom |
|
| 73 |
70 71 72
|
syl2anc |
|
| 74 |
|
xnegid |
|
| 75 |
74
|
ad2antlr |
|
| 76 |
68 73 75
|
3eqtrd |
|
| 77 |
76
|
ex |
|
| 78 |
66 77
|
impbid |
|