Metamath Proof Explorer


Theorem xrsupexmnf

Description: Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005)

Ref Expression
Assertion xrsupexmnf x*yA¬x<yy*y<xzAy<zx*yA−∞¬x<yy*y<xzA−∞y<z

Proof

Step Hyp Ref Expression
1 elun yA−∞yAy−∞
2 simpr x*yA¬x<yyA¬x<y
3 velsn y−∞y=−∞
4 nltmnf x*¬x<−∞
5 breq2 y=−∞x<yx<−∞
6 5 notbid y=−∞¬x<y¬x<−∞
7 4 6 syl5ibrcom x*y=−∞¬x<y
8 3 7 biimtrid x*y−∞¬x<y
9 8 adantr x*yA¬x<yy−∞¬x<y
10 2 9 jaod x*yA¬x<yyAy−∞¬x<y
11 1 10 biimtrid x*yA¬x<yyA−∞¬x<y
12 11 ex x*yA¬x<yyA−∞¬x<y
13 12 ralimdv2 x*yA¬x<yyA−∞¬x<y
14 elun1 zAzA−∞
15 14 anim1i zAy<zzA−∞y<z
16 15 reximi2 zAy<zzA−∞y<z
17 16 imim2i y<xzAy<zy<xzA−∞y<z
18 17 ralimi y*y<xzAy<zy*y<xzA−∞y<z
19 13 18 anim12d1 x*yA¬x<yy*y<xzAy<zyA−∞¬x<yy*y<xzA−∞y<z
20 19 reximia x*yA¬x<yy*y<xzAy<zx*yA−∞¬x<yy*y<xzA−∞y<z