Metamath Proof Explorer


Theorem zdiv

Description: Two ways to express " M divides N . (Contributed by NM, 3-Oct-2008)

Ref Expression
Assertion zdiv MNkMk=NNM

Proof

Step Hyp Ref Expression
1 nnne0 MM0
2 1 adantr MNM0
3 nncn MM
4 zcn NN
5 zcn kk
6 divcan3 kMM0MkM=k
7 6 3coml MM0kMkM=k
8 7 3expa MM0kMkM=k
9 5 8 sylan2 MM0kMkM=k
10 9 3adantl2 MNM0kMkM=k
11 oveq1 Mk=NMkM=NM
12 10 11 sylan9req MNM0kMk=Nk=NM
13 simplr MNM0kMk=Nk
14 12 13 eqeltrrd MNM0kMk=NNM
15 14 rexlimdva2 MNM0kMk=NNM
16 divcan2 NMM0MNM=N
17 16 3com12 MNM0MNM=N
18 oveq2 k=NMMk=MNM
19 18 eqeq1d k=NMMk=NMNM=N
20 19 rspcev NMMNM=NkMk=N
21 20 expcom MNM=NNMkMk=N
22 17 21 syl MNM0NMkMk=N
23 15 22 impbid MNM0kMk=NNM
24 23 3expia MNM0kMk=NNM
25 3 4 24 syl2an MNM0kMk=NNM
26 2 25 mpd MNkMk=NNM