Metamath Proof Explorer


Theorem zleltp1

Description: Integer ordering relation. (Contributed by NM, 10-May-2004)

Ref Expression
Assertion zleltp1 M N M N M < N + 1

Proof

Step Hyp Ref Expression
1 zre M M
2 zre N N
3 1re 1
4 leadd1 M N 1 M N M + 1 N + 1
5 3 4 mp3an3 M N M N M + 1 N + 1
6 1 2 5 syl2an M N M N M + 1 N + 1
7 peano2z N N + 1
8 zltp1le M N + 1 M < N + 1 M + 1 N + 1
9 7 8 sylan2 M N M < N + 1 M + 1 N + 1
10 6 9 bitr4d M N M N M < N + 1