Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
zleltp1
Next ⟩
zlem1lt
Metamath Proof Explorer
Ascii
Unicode
Theorem
zleltp1
Description:
Integer ordering relation.
(Contributed by
NM
, 10-May-2004)
Ref
Expression
Assertion
zleltp1
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
≤
N
↔
M
<
N
+
1
Proof
Step
Hyp
Ref
Expression
1
zre
⊢
M
∈
ℤ
→
M
∈
ℝ
2
zre
⊢
N
∈
ℤ
→
N
∈
ℝ
3
1re
⊢
1
∈
ℝ
4
leadd1
⊢
M
∈
ℝ
∧
N
∈
ℝ
∧
1
∈
ℝ
→
M
≤
N
↔
M
+
1
≤
N
+
1
5
3
4
mp3an3
⊢
M
∈
ℝ
∧
N
∈
ℝ
→
M
≤
N
↔
M
+
1
≤
N
+
1
6
1
2
5
syl2an
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
≤
N
↔
M
+
1
≤
N
+
1
7
peano2z
⊢
N
∈
ℤ
→
N
+
1
∈
ℤ
8
zltp1le
⊢
M
∈
ℤ
∧
N
+
1
∈
ℤ
→
M
<
N
+
1
↔
M
+
1
≤
N
+
1
9
7
8
sylan2
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
<
N
+
1
↔
M
+
1
≤
N
+
1
10
6
9
bitr4d
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
≤
N
↔
M
<
N
+
1