Metamath Proof Explorer


Theorem znle2

Description: The ordering of the Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znle2.y Y=/N
znle2.f F=ℤRHomYW
znle2.w W=ifN=00..^N
znle2.l ˙=Y
Assertion znle2 N0˙=FF-1

Proof

Step Hyp Ref Expression
1 znle2.y Y=/N
2 znle2.f F=ℤRHomYW
3 znle2.w W=ifN=00..^N
4 znle2.l ˙=Y
5 eqid RSpanring=RSpanring
6 eqid ring/𝑠ring~QGRSpanringN=ring/𝑠ring~QGRSpanringN
7 eqid ℤRHomring/𝑠ring~QGRSpanringNW=ℤRHomring/𝑠ring~QGRSpanringNW
8 5 6 1 7 3 4 znle N0˙=ℤRHomring/𝑠ring~QGRSpanringNWℤRHomring/𝑠ring~QGRSpanringNW-1
9 5 6 1 znzrh N0ℤRHomring/𝑠ring~QGRSpanringN=ℤRHomY
10 9 reseq1d N0ℤRHomring/𝑠ring~QGRSpanringNW=ℤRHomYW
11 10 2 eqtr4di N0ℤRHomring/𝑠ring~QGRSpanringNW=F
12 11 coeq1d N0ℤRHomring/𝑠ring~QGRSpanringNW=F
13 11 cnveqd N0ℤRHomring/𝑠ring~QGRSpanringNW-1=F-1
14 12 13 coeq12d N0ℤRHomring/𝑠ring~QGRSpanringNWℤRHomring/𝑠ring~QGRSpanringNW-1=FF-1
15 8 14 eqtrd N0˙=FF-1