Metamath Proof Explorer


Theorem zorn2lem2

Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 F=recsfVιvC|uC¬uwv
zorn2lem.4 C=zA|granfgRz
zorn2lem.5 D=zA|gFxgRz
Assertion zorn2lem2 xOnwWeADyxFyRFx

Proof

Step Hyp Ref Expression
1 zorn2lem.3 F=recsfVιvC|uC¬uwv
2 zorn2lem.4 C=zA|granfgRz
3 zorn2lem.5 D=zA|gFxgRz
4 1 2 3 zorn2lem1 xOnwWeADFxD
5 breq2 z=FxgRzgRFx
6 5 ralbidv z=FxgFxgRzgFxgRFx
7 6 3 elrab2 FxDFxAgFxgRFx
8 7 simprbi FxDgFxgRFx
9 4 8 syl xOnwWeADgFxgRFx
10 1 tfr1 FFnOn
11 onss xOnxOn
12 fnfvima FFnOnxOnyxFyFx
13 12 3expia FFnOnxOnyxFyFx
14 10 11 13 sylancr xOnyxFyFx
15 14 adantr xOnwWeADyxFyFx
16 breq1 g=FygRFxFyRFx
17 16 rspccv gFxgRFxFyFxFyRFx
18 9 15 17 sylsyld xOnwWeADyxFyRFx