Metamath Proof Explorer


Theorem zorn2lem3

Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 F=recsfVιvC|uC¬uwv
zorn2lem.4 C=zA|granfgRz
zorn2lem.5 D=zA|gFxgRz
Assertion zorn2lem3 RPoAxOnwWeADyx¬Fx=Fy

Proof

Step Hyp Ref Expression
1 zorn2lem.3 F=recsfVιvC|uC¬uwv
2 zorn2lem.4 C=zA|granfgRz
3 zorn2lem.5 D=zA|gFxgRz
4 1 2 3 zorn2lem2 xOnwWeADyxFyRFx
5 4 adantl RPoAxOnwWeADyxFyRFx
6 3 ssrab3 DA
7 1 2 3 zorn2lem1 xOnwWeADFxD
8 6 7 sselid xOnwWeADFxA
9 breq1 Fx=FyFxRFxFyRFx
10 9 biimprcd FyRFxFx=FyFxRFx
11 poirr RPoAFxA¬FxRFx
12 10 11 nsyli FyRFxRPoAFxA¬Fx=Fy
13 12 com12 RPoAFxAFyRFx¬Fx=Fy
14 8 13 sylan2 RPoAxOnwWeADFyRFx¬Fx=Fy
15 5 14 syld RPoAxOnwWeADyx¬Fx=Fy