Description: The zero ring is not a division ring. (Contributed by FL, 24-Jan-2010) (Proof shortened by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | zrdivrng.1 | |
|
Assertion | zrdivrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrdivrng.1 | |
|
2 | 0ngrp | |
|
3 | opex | |
|
4 | 3 | rnsnop | |
5 | 1 | gidsn | |
6 | 5 | sneqi | |
7 | 4 6 | difeq12i | |
8 | difid | |
|
9 | 7 8 | eqtri | |
10 | 9 | xpeq2i | |
11 | xp0 | |
|
12 | 10 11 | eqtri | |
13 | 12 | reseq2i | |
14 | res0 | |
|
15 | 13 14 | eqtri | |
16 | snex | |
|
17 | isdivrngo | |
|
18 | 16 17 | ax-mp | |
19 | 18 | simprbi | |
20 | 15 19 | eqeltrrid | |
21 | 2 20 | mto | |