Metamath Proof Explorer


Theorem zrdivrng

Description: The zero ring is not a division ring. (Contributed by FL, 24-Jan-2010) (Proof shortened by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis zrdivrng.1 AV
Assertion zrdivrng ¬AAAAAADivRingOps

Proof

Step Hyp Ref Expression
1 zrdivrng.1 AV
2 0ngrp ¬GrpOp
3 opex AAV
4 3 rnsnop ranAAA=A
5 1 gidsn GIdAAA=A
6 5 sneqi GIdAAA=A
7 4 6 difeq12i ranAAAGIdAAA=AA
8 difid AA=
9 7 8 eqtri ranAAAGIdAAA=
10 9 xpeq2i ranAAAGIdAAA×ranAAAGIdAAA=ranAAAGIdAAA×
11 xp0 ranAAAGIdAAA×=
12 10 11 eqtri ranAAAGIdAAA×ranAAAGIdAAA=
13 12 reseq2i AAAranAAAGIdAAA×ranAAAGIdAAA=AAA
14 res0 AAA=
15 13 14 eqtri AAAranAAAGIdAAA×ranAAAGIdAAA=
16 snex AAAV
17 isdivrngo AAAVAAAAAADivRingOpsAAAAAARingOpsAAAranAAAGIdAAA×ranAAAGIdAAAGrpOp
18 16 17 ax-mp AAAAAADivRingOpsAAAAAARingOpsAAAranAAAGIdAAA×ranAAAGIdAAAGrpOp
19 18 simprbi AAAAAADivRingOpsAAAranAAAGIdAAA×ranAAAGIdAAAGrpOp
20 15 19 eqeltrrid AAAAAADivRingOpsGrpOp
21 2 20 mto ¬AAAAAADivRingOps