Metamath Proof Explorer


Theorem zringcyg

Description: The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 9-Jun-2019)

Ref Expression
Assertion zringcyg ringCycGrp

Proof

Step Hyp Ref Expression
1 zringbas =Basering
2 eqid ring=ring
3 zsubrg SubRingfld
4 subrgsubg SubRingfldSubGrpfld
5 3 4 ax-mp SubGrpfld
6 df-zring ring=fld𝑠
7 6 subggrp SubGrpfldringGrp
8 5 7 mp1i ringGrp
9 1zzd 1
10 ax-1cn 1
11 cnfldmulg x1xfld1=x1
12 10 11 mpan2 xxfld1=x1
13 1z 1
14 eqid fld=fld
15 14 6 2 subgmulg SubGrpfldx1xfld1=xring1
16 5 13 15 mp3an13 xxfld1=xring1
17 zcn xx
18 17 mulridd xx1=x
19 12 16 18 3eqtr3rd xx=xring1
20 oveq1 z=xzring1=xring1
21 20 rspceeqv xx=xring1zx=zring1
22 19 21 mpdan xzx=zring1
23 22 adantl xzx=zring1
24 1 2 8 9 23 iscygd ringCycGrp
25 24 mptru ringCycGrp