Description: The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 9-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | zringcyg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringbas | |
|
2 | eqid | |
|
3 | zsubrg | |
|
4 | subrgsubg | |
|
5 | 3 4 | ax-mp | |
6 | df-zring | |
|
7 | 6 | subggrp | |
8 | 5 7 | mp1i | |
9 | 1zzd | |
|
10 | ax-1cn | |
|
11 | cnfldmulg | |
|
12 | 10 11 | mpan2 | |
13 | 1z | |
|
14 | eqid | |
|
15 | 14 6 2 | subgmulg | |
16 | 5 13 15 | mp3an13 | |
17 | zcn | |
|
18 | 17 | mulridd | |
19 | 12 16 18 | 3eqtr3rd | |
20 | oveq1 | |
|
21 | 20 | rspceeqv | |
22 | 19 21 | mpdan | |
23 | 22 | adantl | |
24 | 1 2 8 9 23 | iscygd | |
25 | 24 | mptru | |