| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0frgp.g | ⊢ 𝐺  =  ( freeGrp ‘ ∅ ) | 
						
							| 2 |  | 0frgp.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 4 | 1 | frgpgrp | ⊢ ( ∅  ∈  V  →  𝐺  ∈  Grp ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ 𝐺  ∈  Grp | 
						
							| 6 |  | f0 | ⊢ ∅ : ∅ ⟶ 𝐵 | 
						
							| 7 |  | eqid | ⊢ (  ~FG  ‘ ∅ )  =  (  ~FG  ‘ ∅ ) | 
						
							| 8 |  | eqid | ⊢ ( varFGrp ‘ ∅ )  =  ( varFGrp ‘ ∅ ) | 
						
							| 9 | 7 8 1 2 | vrgpf | ⊢ ( ∅  ∈  V  →  ( varFGrp ‘ ∅ ) : ∅ ⟶ 𝐵 ) | 
						
							| 10 |  | ffn | ⊢ ( ( varFGrp ‘ ∅ ) : ∅ ⟶ 𝐵  →  ( varFGrp ‘ ∅ )  Fn  ∅ ) | 
						
							| 11 | 3 9 10 | mp2b | ⊢ ( varFGrp ‘ ∅ )  Fn  ∅ | 
						
							| 12 |  | fn0 | ⊢ ( ( varFGrp ‘ ∅ )  Fn  ∅  ↔  ( varFGrp ‘ ∅ )  =  ∅ ) | 
						
							| 13 | 11 12 | mpbi | ⊢ ( varFGrp ‘ ∅ )  =  ∅ | 
						
							| 14 | 13 | eqcomi | ⊢ ∅  =  ( varFGrp ‘ ∅ ) | 
						
							| 15 | 1 2 14 | frgpup3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ∅  ∈  V  ∧  ∅ : ∅ ⟶ 𝐵 )  →  ∃! 𝑓  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑓  ∘  ∅ )  =  ∅ ) | 
						
							| 16 | 5 3 6 15 | mp3an | ⊢ ∃! 𝑓  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑓  ∘  ∅ )  =  ∅ | 
						
							| 17 |  | reurmo | ⊢ ( ∃! 𝑓  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑓  ∘  ∅ )  =  ∅  →  ∃* 𝑓  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑓  ∘  ∅ )  =  ∅ ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ ∃* 𝑓  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑓  ∘  ∅ )  =  ∅ | 
						
							| 19 | 2 | idghm | ⊢ ( 𝐺  ∈  Grp  →  (  I   ↾  𝐵 )  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 20 | 5 19 | ax-mp | ⊢ (  I   ↾  𝐵 )  ∈  ( 𝐺  GrpHom  𝐺 ) | 
						
							| 21 |  | tru | ⊢ ⊤ | 
						
							| 22 | 20 21 | pm3.2i | ⊢ ( (  I   ↾  𝐵 )  ∈  ( 𝐺  GrpHom  𝐺 )  ∧  ⊤ ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 24 | 23 2 | 0ghm | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  Grp )  →  ( 𝐵  ×  { ( 0g ‘ 𝐺 ) } )  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 25 | 5 5 24 | mp2an | ⊢ ( 𝐵  ×  { ( 0g ‘ 𝐺 ) } )  ∈  ( 𝐺  GrpHom  𝐺 ) | 
						
							| 26 | 25 21 | pm3.2i | ⊢ ( ( 𝐵  ×  { ( 0g ‘ 𝐺 ) } )  ∈  ( 𝐺  GrpHom  𝐺 )  ∧  ⊤ ) | 
						
							| 27 |  | co02 | ⊢ ( 𝑓  ∘  ∅ )  =  ∅ | 
						
							| 28 | 27 | bitru | ⊢ ( ( 𝑓  ∘  ∅ )  =  ∅  ↔  ⊤ ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝑓  =  (  I   ↾  𝐵 )  →  ( ( 𝑓  ∘  ∅ )  =  ∅  ↔  ⊤ ) ) | 
						
							| 30 | 28 | a1i | ⊢ ( 𝑓  =  ( 𝐵  ×  { ( 0g ‘ 𝐺 ) } )  →  ( ( 𝑓  ∘  ∅ )  =  ∅  ↔  ⊤ ) ) | 
						
							| 31 | 29 30 | rmoi | ⊢ ( ( ∃* 𝑓  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑓  ∘  ∅ )  =  ∅  ∧  ( (  I   ↾  𝐵 )  ∈  ( 𝐺  GrpHom  𝐺 )  ∧  ⊤ )  ∧  ( ( 𝐵  ×  { ( 0g ‘ 𝐺 ) } )  ∈  ( 𝐺  GrpHom  𝐺 )  ∧  ⊤ ) )  →  (  I   ↾  𝐵 )  =  ( 𝐵  ×  { ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 32 | 18 22 26 31 | mp3an | ⊢ (  I   ↾  𝐵 )  =  ( 𝐵  ×  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 33 |  | mptresid | ⊢ (  I   ↾  𝐵 )  =  ( 𝑥  ∈  𝐵  ↦  𝑥 ) | 
						
							| 34 |  | fconstmpt | ⊢ ( 𝐵  ×  { ( 0g ‘ 𝐺 ) } )  =  ( 𝑥  ∈  𝐵  ↦  ( 0g ‘ 𝐺 ) ) | 
						
							| 35 | 32 33 34 | 3eqtr3i | ⊢ ( 𝑥  ∈  𝐵  ↦  𝑥 )  =  ( 𝑥  ∈  𝐵  ↦  ( 0g ‘ 𝐺 ) ) | 
						
							| 36 |  | mpteqb | ⊢ ( ∀ 𝑥  ∈  𝐵 𝑥  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  𝑥 )  =  ( 𝑥  ∈  𝐵  ↦  ( 0g ‘ 𝐺 ) )  ↔  ∀ 𝑥  ∈  𝐵 𝑥  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 37 |  | id | ⊢ ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝐵 ) | 
						
							| 38 | 36 37 | mprg | ⊢ ( ( 𝑥  ∈  𝐵  ↦  𝑥 )  =  ( 𝑥  ∈  𝐵  ↦  ( 0g ‘ 𝐺 ) )  ↔  ∀ 𝑥  ∈  𝐵 𝑥  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 39 | 35 38 | mpbi | ⊢ ∀ 𝑥  ∈  𝐵 𝑥  =  ( 0g ‘ 𝐺 ) | 
						
							| 40 | 39 | rspec | ⊢ ( 𝑥  ∈  𝐵  →  𝑥  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 41 |  | velsn | ⊢ ( 𝑥  ∈  { ( 0g ‘ 𝐺 ) }  ↔  𝑥  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 42 | 40 41 | sylibr | ⊢ ( 𝑥  ∈  𝐵  →  𝑥  ∈  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 43 | 42 | ssriv | ⊢ 𝐵  ⊆  { ( 0g ‘ 𝐺 ) } | 
						
							| 44 | 2 23 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 45 | 5 44 | ax-mp | ⊢ ( 0g ‘ 𝐺 )  ∈  𝐵 | 
						
							| 46 |  | snssi | ⊢ ( ( 0g ‘ 𝐺 )  ∈  𝐵  →  { ( 0g ‘ 𝐺 ) }  ⊆  𝐵 ) | 
						
							| 47 | 45 46 | ax-mp | ⊢ { ( 0g ‘ 𝐺 ) }  ⊆  𝐵 | 
						
							| 48 | 43 47 | eqssi | ⊢ 𝐵  =  { ( 0g ‘ 𝐺 ) } | 
						
							| 49 |  | fvex | ⊢ ( 0g ‘ 𝐺 )  ∈  V | 
						
							| 50 | 49 | ensn1 | ⊢ { ( 0g ‘ 𝐺 ) }  ≈  1o | 
						
							| 51 | 48 50 | eqbrtri | ⊢ 𝐵  ≈  1o |