| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vrgpfval.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 2 |  | vrgpfval.u | ⊢ 𝑈  =  ( varFGrp ‘ 𝐼 ) | 
						
							| 3 |  | vrgpf.m | ⊢ 𝐺  =  ( freeGrp ‘ 𝐼 ) | 
						
							| 4 |  | vrgpf.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 5 | 1 2 | vrgpfval | ⊢ ( 𝐼  ∈  𝑉  →  𝑈  =  ( 𝑗  ∈  𝐼  ↦  [ 〈“ 〈 𝑗 ,  ∅ 〉 ”〉 ]  ∼  ) ) | 
						
							| 6 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 7 | 6 | prid1 | ⊢ ∅  ∈  { ∅ ,  1o } | 
						
							| 8 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 9 | 7 8 | eleqtrri | ⊢ ∅  ∈  2o | 
						
							| 10 |  | opelxpi | ⊢ ( ( 𝑗  ∈  𝐼  ∧  ∅  ∈  2o )  →  〈 𝑗 ,  ∅ 〉  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 11 | 9 10 | mpan2 | ⊢ ( 𝑗  ∈  𝐼  →  〈 𝑗 ,  ∅ 〉  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑗  ∈  𝐼 )  →  〈 𝑗 ,  ∅ 〉  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 13 | 12 | s1cld | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑗  ∈  𝐼 )  →  〈“ 〈 𝑗 ,  ∅ 〉 ”〉  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 14 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 15 |  | xpexg | ⊢ ( ( 𝐼  ∈  𝑉  ∧  2o  ∈  On )  →  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 16 | 14 15 | mpan2 | ⊢ ( 𝐼  ∈  𝑉  →  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑗  ∈  𝐼 )  →  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 18 |  | wrdexg | ⊢ ( ( 𝐼  ×  2o )  ∈  V  →  Word  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 19 |  | fvi | ⊢ ( Word  ( 𝐼  ×  2o )  ∈  V  →  (  I  ‘ Word  ( 𝐼  ×  2o ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 20 | 17 18 19 | 3syl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑗  ∈  𝐼 )  →  (  I  ‘ Word  ( 𝐼  ×  2o ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 21 | 13 20 | eleqtrrd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑗  ∈  𝐼 )  →  〈“ 〈 𝑗 ,  ∅ 〉 ”〉  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) ) ) | 
						
							| 22 |  | eqid | ⊢ (  I  ‘ Word  ( 𝐼  ×  2o ) )  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 23 | 3 1 22 4 | frgpeccl | ⊢ ( 〈“ 〈 𝑗 ,  ∅ 〉 ”〉  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  →  [ 〈“ 〈 𝑗 ,  ∅ 〉 ”〉 ]  ∼   ∈  𝑋 ) | 
						
							| 24 | 21 23 | syl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑗  ∈  𝐼 )  →  [ 〈“ 〈 𝑗 ,  ∅ 〉 ”〉 ]  ∼   ∈  𝑋 ) | 
						
							| 25 | 5 24 | fmpt3d | ⊢ ( 𝐼  ∈  𝑉  →  𝑈 : 𝐼 ⟶ 𝑋 ) |