Metamath Proof Explorer


Theorem vrgpinv

Description: The inverse of a generating element is represented by <. A , 1 >. instead of <. A , 0 >. . (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses vrgpfval.r = ( ~FG𝐼 )
vrgpfval.u 𝑈 = ( varFGrp𝐼 )
vrgpf.m 𝐺 = ( freeGrp ‘ 𝐼 )
vrgpinv.n 𝑁 = ( invg𝐺 )
Assertion vrgpinv ( ( 𝐼𝑉𝐴𝐼 ) → ( 𝑁 ‘ ( 𝑈𝐴 ) ) = [ ⟨“ ⟨ 𝐴 , 1o ⟩ ”⟩ ] )

Proof

Step Hyp Ref Expression
1 vrgpfval.r = ( ~FG𝐼 )
2 vrgpfval.u 𝑈 = ( varFGrp𝐼 )
3 vrgpf.m 𝐺 = ( freeGrp ‘ 𝐼 )
4 vrgpinv.n 𝑁 = ( invg𝐺 )
5 1 2 vrgpval ( ( 𝐼𝑉𝐴𝐼 ) → ( 𝑈𝐴 ) = [ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ] )
6 5 fveq2d ( ( 𝐼𝑉𝐴𝐼 ) → ( 𝑁 ‘ ( 𝑈𝐴 ) ) = ( 𝑁 ‘ [ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ] ) )
7 simpr ( ( 𝐼𝑉𝐴𝐼 ) → 𝐴𝐼 )
8 0ex ∅ ∈ V
9 8 prid1 ∅ ∈ { ∅ , 1o }
10 df2o3 2o = { ∅ , 1o }
11 9 10 eleqtrri ∅ ∈ 2o
12 opelxpi ( ( 𝐴𝐼 ∧ ∅ ∈ 2o ) → ⟨ 𝐴 , ∅ ⟩ ∈ ( 𝐼 × 2o ) )
13 7 11 12 sylancl ( ( 𝐼𝑉𝐴𝐼 ) → ⟨ 𝐴 , ∅ ⟩ ∈ ( 𝐼 × 2o ) )
14 13 s1cld ( ( 𝐼𝑉𝐴𝐼 ) → ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ∈ Word ( 𝐼 × 2o ) )
15 simpl ( ( 𝐼𝑉𝐴𝐼 ) → 𝐼𝑉 )
16 2on 2o ∈ On
17 xpexg ( ( 𝐼𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V )
18 15 16 17 sylancl ( ( 𝐼𝑉𝐴𝐼 ) → ( 𝐼 × 2o ) ∈ V )
19 wrdexg ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V )
20 fvi ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) )
21 18 19 20 3syl ( ( 𝐼𝑉𝐴𝐼 ) → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) )
22 14 21 eleqtrrd ( ( 𝐼𝑉𝐴𝐼 ) → ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ∈ ( I ‘ Word ( 𝐼 × 2o ) ) )
23 eqid ( I ‘ Word ( 𝐼 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) )
24 eqid ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) = ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ )
25 23 3 1 4 24 frgpinv ( ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → ( 𝑁 ‘ [ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ] ) = [ ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∘ ( reverse ‘ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ) ) ] )
26 22 25 syl ( ( 𝐼𝑉𝐴𝐼 ) → ( 𝑁 ‘ [ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ] ) = [ ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∘ ( reverse ‘ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ) ) ] )
27 revs1 ( reverse ‘ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ) = ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩
28 27 a1i ( ( 𝐼𝑉𝐴𝐼 ) → ( reverse ‘ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ) = ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ )
29 28 coeq2d ( ( 𝐼𝑉𝐴𝐼 ) → ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∘ ( reverse ‘ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ) ) = ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∘ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ) )
30 24 efgmf ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o )
31 s1co ( ( ⟨ 𝐴 , ∅ ⟩ ∈ ( 𝐼 × 2o ) ∧ ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∘ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ) = ⟨“ ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ‘ ⟨ 𝐴 , ∅ ⟩ ) ”⟩ )
32 13 30 31 sylancl ( ( 𝐼𝑉𝐴𝐼 ) → ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∘ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ) = ⟨“ ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ‘ ⟨ 𝐴 , ∅ ⟩ ) ”⟩ )
33 24 efgmval ( ( 𝐴𝐼 ∧ ∅ ∈ 2o ) → ( 𝐴 ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∅ ) = ⟨ 𝐴 , ( 1o ∖ ∅ ) ⟩ )
34 7 11 33 sylancl ( ( 𝐼𝑉𝐴𝐼 ) → ( 𝐴 ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∅ ) = ⟨ 𝐴 , ( 1o ∖ ∅ ) ⟩ )
35 df-ov ( 𝐴 ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∅ ) = ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ‘ ⟨ 𝐴 , ∅ ⟩ )
36 dif0 ( 1o ∖ ∅ ) = 1o
37 36 opeq2i 𝐴 , ( 1o ∖ ∅ ) ⟩ = ⟨ 𝐴 , 1o
38 34 35 37 3eqtr3g ( ( 𝐼𝑉𝐴𝐼 ) → ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ‘ ⟨ 𝐴 , ∅ ⟩ ) = ⟨ 𝐴 , 1o ⟩ )
39 38 s1eqd ( ( 𝐼𝑉𝐴𝐼 ) → ⟨“ ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ‘ ⟨ 𝐴 , ∅ ⟩ ) ”⟩ = ⟨“ ⟨ 𝐴 , 1o ⟩ ”⟩ )
40 29 32 39 3eqtrd ( ( 𝐼𝑉𝐴𝐼 ) → ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∘ ( reverse ‘ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ) ) = ⟨“ ⟨ 𝐴 , 1o ⟩ ”⟩ )
41 40 eceq1d ( ( 𝐼𝑉𝐴𝐼 ) → [ ( ( 𝑥𝐼 , 𝑦 ∈ 2o ↦ ⟨ 𝑥 , ( 1o𝑦 ) ⟩ ) ∘ ( reverse ‘ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ) ) ] = [ ⟨“ ⟨ 𝐴 , 1o ⟩ ”⟩ ] )
42 6 26 41 3eqtrd ( ( 𝐼𝑉𝐴𝐼 ) → ( 𝑁 ‘ ( 𝑈𝐴 ) ) = [ ⟨“ ⟨ 𝐴 , 1o ⟩ ”⟩ ] )