| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vrgpfval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 2 |  | vrgpfval.u |  |-  U = ( varFGrp ` I ) | 
						
							| 3 |  | vrgpf.m |  |-  G = ( freeGrp ` I ) | 
						
							| 4 |  | vrgpinv.n |  |-  N = ( invg ` G ) | 
						
							| 5 | 1 2 | vrgpval |  |-  ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( I e. V /\ A e. I ) -> ( N ` ( U ` A ) ) = ( N ` [ <" <. A , (/) >. "> ] .~ ) ) | 
						
							| 7 |  | simpr |  |-  ( ( I e. V /\ A e. I ) -> A e. I ) | 
						
							| 8 |  | 0ex |  |-  (/) e. _V | 
						
							| 9 | 8 | prid1 |  |-  (/) e. { (/) , 1o } | 
						
							| 10 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 11 | 9 10 | eleqtrri |  |-  (/) e. 2o | 
						
							| 12 |  | opelxpi |  |-  ( ( A e. I /\ (/) e. 2o ) -> <. A , (/) >. e. ( I X. 2o ) ) | 
						
							| 13 | 7 11 12 | sylancl |  |-  ( ( I e. V /\ A e. I ) -> <. A , (/) >. e. ( I X. 2o ) ) | 
						
							| 14 | 13 | s1cld |  |-  ( ( I e. V /\ A e. I ) -> <" <. A , (/) >. "> e. Word ( I X. 2o ) ) | 
						
							| 15 |  | simpl |  |-  ( ( I e. V /\ A e. I ) -> I e. V ) | 
						
							| 16 |  | 2on |  |-  2o e. On | 
						
							| 17 |  | xpexg |  |-  ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( ( I e. V /\ A e. I ) -> ( I X. 2o ) e. _V ) | 
						
							| 19 |  | wrdexg |  |-  ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) | 
						
							| 20 |  | fvi |  |-  ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) | 
						
							| 21 | 18 19 20 | 3syl |  |-  ( ( I e. V /\ A e. I ) -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) | 
						
							| 22 | 14 21 | eleqtrrd |  |-  ( ( I e. V /\ A e. I ) -> <" <. A , (/) >. "> e. ( _I ` Word ( I X. 2o ) ) ) | 
						
							| 23 |  | eqid |  |-  ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) | 
						
							| 24 |  | eqid |  |-  ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) = ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) | 
						
							| 25 | 23 3 1 4 24 | frgpinv |  |-  ( <" <. A , (/) >. "> e. ( _I ` Word ( I X. 2o ) ) -> ( N ` [ <" <. A , (/) >. "> ] .~ ) = [ ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) ] .~ ) | 
						
							| 26 | 22 25 | syl |  |-  ( ( I e. V /\ A e. I ) -> ( N ` [ <" <. A , (/) >. "> ] .~ ) = [ ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) ] .~ ) | 
						
							| 27 |  | revs1 |  |-  ( reverse ` <" <. A , (/) >. "> ) = <" <. A , (/) >. "> | 
						
							| 28 | 27 | a1i |  |-  ( ( I e. V /\ A e. I ) -> ( reverse ` <" <. A , (/) >. "> ) = <" <. A , (/) >. "> ) | 
						
							| 29 | 28 | coeq2d |  |-  ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) = ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. <" <. A , (/) >. "> ) ) | 
						
							| 30 | 24 | efgmf |  |-  ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) : ( I X. 2o ) --> ( I X. 2o ) | 
						
							| 31 |  | s1co |  |-  ( ( <. A , (/) >. e. ( I X. 2o ) /\ ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) : ( I X. 2o ) --> ( I X. 2o ) ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. <" <. A , (/) >. "> ) = <" ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) "> ) | 
						
							| 32 | 13 30 31 | sylancl |  |-  ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. <" <. A , (/) >. "> ) = <" ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) "> ) | 
						
							| 33 | 24 | efgmval |  |-  ( ( A e. I /\ (/) e. 2o ) -> ( A ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) (/) ) = <. A , ( 1o \ (/) ) >. ) | 
						
							| 34 | 7 11 33 | sylancl |  |-  ( ( I e. V /\ A e. I ) -> ( A ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) (/) ) = <. A , ( 1o \ (/) ) >. ) | 
						
							| 35 |  | df-ov |  |-  ( A ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) (/) ) = ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) | 
						
							| 36 |  | dif0 |  |-  ( 1o \ (/) ) = 1o | 
						
							| 37 | 36 | opeq2i |  |-  <. A , ( 1o \ (/) ) >. = <. A , 1o >. | 
						
							| 38 | 34 35 37 | 3eqtr3g |  |-  ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) = <. A , 1o >. ) | 
						
							| 39 | 38 | s1eqd |  |-  ( ( I e. V /\ A e. I ) -> <" ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) "> = <" <. A , 1o >. "> ) | 
						
							| 40 | 29 32 39 | 3eqtrd |  |-  ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) = <" <. A , 1o >. "> ) | 
						
							| 41 | 40 | eceq1d |  |-  ( ( I e. V /\ A e. I ) -> [ ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) ] .~ = [ <" <. A , 1o >. "> ] .~ ) | 
						
							| 42 | 6 26 41 | 3eqtrd |  |-  ( ( I e. V /\ A e. I ) -> ( N ` ( U ` A ) ) = [ <" <. A , 1o >. "> ] .~ ) |