| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup3.g | ⊢ 𝐺  =  ( freeGrp ‘ 𝐼 ) | 
						
							| 2 |  | frgpup3.b | ⊢ 𝐵  =  ( Base ‘ 𝐻 ) | 
						
							| 3 |  | frgpup3.u | ⊢ 𝑈  =  ( varFGrp ‘ 𝐼 ) | 
						
							| 4 |  | eqid | ⊢ ( invg ‘ 𝐻 )  =  ( invg ‘ 𝐻 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  𝐻  ∈  Grp ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  𝐼  ∈  𝑉 ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  𝐹 : 𝐼 ⟶ 𝐵 ) | 
						
							| 9 |  | eqid | ⊢ (  I  ‘ Word  ( 𝐼  ×  2o ) )  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 10 |  | eqid | ⊢ (  ~FG  ‘ 𝐼 )  =  (  ~FG  ‘ 𝐼 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 12 |  | eqid | ⊢ ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  =  ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) | 
						
							| 13 | 2 4 5 6 7 8 9 10 1 11 12 | frgpup1 | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 14 | 6 | adantr | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  𝑘  ∈  𝐼 )  →  𝐻  ∈  Grp ) | 
						
							| 15 | 7 | adantr | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  𝑘  ∈  𝐼 )  →  𝐼  ∈  𝑉 ) | 
						
							| 16 | 8 | adantr | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  𝑘  ∈  𝐼 )  →  𝐹 : 𝐼 ⟶ 𝐵 ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  𝑘  ∈  𝐼 )  →  𝑘  ∈  𝐼 ) | 
						
							| 18 | 2 4 5 14 15 16 9 10 1 11 12 3 17 | frgpup2 | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  𝑘  ∈  𝐼 )  →  ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) ‘ ( 𝑈 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 19 | 18 | mpteq2dva | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  ( 𝑘  ∈  𝐼  ↦  ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) ‘ ( 𝑈 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 20 | 11 2 | ghmf | ⊢ ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  ∈  ( 𝐺  GrpHom  𝐻 )  →  ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) : ( Base ‘ 𝐺 ) ⟶ 𝐵 ) | 
						
							| 21 | 13 20 | syl | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) : ( Base ‘ 𝐺 ) ⟶ 𝐵 ) | 
						
							| 22 | 10 3 1 11 | vrgpf | ⊢ ( 𝐼  ∈  𝑉  →  𝑈 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 23 | 7 22 | syl | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  𝑈 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 24 |  | fcompt | ⊢ ( ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) : ( Base ‘ 𝐺 ) ⟶ 𝐵  ∧  𝑈 : 𝐼 ⟶ ( Base ‘ 𝐺 ) )  →  ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  ∘  𝑈 )  =  ( 𝑘  ∈  𝐼  ↦  ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) ‘ ( 𝑈 ‘ 𝑘 ) ) ) ) | 
						
							| 25 | 21 23 24 | syl2anc | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  ∘  𝑈 )  =  ( 𝑘  ∈  𝐼  ↦  ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) ‘ ( 𝑈 ‘ 𝑘 ) ) ) ) | 
						
							| 26 | 8 | feqmptd | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  𝐹  =  ( 𝑘  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 27 | 19 25 26 | 3eqtr4d | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  ∘  𝑈 )  =  𝐹 ) | 
						
							| 28 | 6 | adantr | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  ( 𝑚  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  ( 𝑚  ∘  𝑈 )  =  𝐹 ) )  →  𝐻  ∈  Grp ) | 
						
							| 29 | 7 | adantr | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  ( 𝑚  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  ( 𝑚  ∘  𝑈 )  =  𝐹 ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 30 | 8 | adantr | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  ( 𝑚  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  ( 𝑚  ∘  𝑈 )  =  𝐹 ) )  →  𝐹 : 𝐼 ⟶ 𝐵 ) | 
						
							| 31 |  | simprl | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  ( 𝑚  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  ( 𝑚  ∘  𝑈 )  =  𝐹 ) )  →  𝑚  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 32 |  | simprr | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  ( 𝑚  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  ( 𝑚  ∘  𝑈 )  =  𝐹 ) )  →  ( 𝑚  ∘  𝑈 )  =  𝐹 ) | 
						
							| 33 | 2 4 5 28 29 30 9 10 1 11 12 3 31 32 | frgpup3lem | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  ( 𝑚  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  ( 𝑚  ∘  𝑈 )  =  𝐹 ) )  →  𝑚  =  ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) ) | 
						
							| 34 | 33 | expr | ⊢ ( ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  ∧  𝑚  ∈  ( 𝐺  GrpHom  𝐻 ) )  →  ( ( 𝑚  ∘  𝑈 )  =  𝐹  →  𝑚  =  ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) ) ) | 
						
							| 35 | 34 | ralrimiva | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  ∀ 𝑚  ∈  ( 𝐺  GrpHom  𝐻 ) ( ( 𝑚  ∘  𝑈 )  =  𝐹  →  𝑚  =  ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) ) ) | 
						
							| 36 |  | coeq1 | ⊢ ( 𝑚  =  ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  →  ( 𝑚  ∘  𝑈 )  =  ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  ∘  𝑈 ) ) | 
						
							| 37 | 36 | eqeq1d | ⊢ ( 𝑚  =  ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  →  ( ( 𝑚  ∘  𝑈 )  =  𝐹  ↔  ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  ∘  𝑈 )  =  𝐹 ) ) | 
						
							| 38 | 37 | eqreu | ⊢ ( ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  ( ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 )  ∘  𝑈 )  =  𝐹  ∧  ∀ 𝑚  ∈  ( 𝐺  GrpHom  𝐻 ) ( ( 𝑚  ∘  𝑈 )  =  𝐹  →  𝑚  =  ran  ( 𝑔  ∈  (  I  ‘ Word  ( 𝐼  ×  2o ) )  ↦  〈 [ 𝑔 ] (  ~FG  ‘ 𝐼 ) ,  ( 𝐻  Σg  ( ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) )  ∘  𝑔 ) ) 〉 ) ) )  →  ∃! 𝑚  ∈  ( 𝐺  GrpHom  𝐻 ) ( 𝑚  ∘  𝑈 )  =  𝐹 ) | 
						
							| 39 | 13 27 35 38 | syl3anc | ⊢ ( ( 𝐻  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ 𝐵 )  →  ∃! 𝑚  ∈  ( 𝐺  GrpHom  𝐻 ) ( 𝑚  ∘  𝑈 )  =  𝐹 ) |