| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup.b | ⊢ 𝐵  =  ( Base ‘ 𝐻 ) | 
						
							| 2 |  | frgpup.n | ⊢ 𝑁  =  ( invg ‘ 𝐻 ) | 
						
							| 3 |  | frgpup.t | ⊢ 𝑇  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 4 |  | frgpup.h | ⊢ ( 𝜑  →  𝐻  ∈  Grp ) | 
						
							| 5 |  | frgpup.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | frgpup.a | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ 𝐵 ) | 
						
							| 7 |  | frgpup.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 8 |  | frgpup.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 9 |  | frgpup.g | ⊢ 𝐺  =  ( freeGrp ‘ 𝐼 ) | 
						
							| 10 |  | frgpup.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 11 |  | frgpup.e | ⊢ 𝐸  =  ran  ( 𝑔  ∈  𝑊  ↦  〈 [ 𝑔 ]  ∼  ,  ( 𝐻  Σg  ( 𝑇  ∘  𝑔 ) ) 〉 ) | 
						
							| 12 |  | frgpup.u | ⊢ 𝑈  =  ( varFGrp ‘ 𝐼 ) | 
						
							| 13 |  | frgpup3.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 14 |  | frgpup3.e | ⊢ ( 𝜑  →  ( 𝐾  ∘  𝑈 )  =  𝐹 ) | 
						
							| 15 | 10 1 | ghmf | ⊢ ( 𝐾  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐾 : 𝑋 ⟶ 𝐵 ) | 
						
							| 16 |  | ffn | ⊢ ( 𝐾 : 𝑋 ⟶ 𝐵  →  𝐾  Fn  𝑋 ) | 
						
							| 17 | 13 15 16 | 3syl | ⊢ ( 𝜑  →  𝐾  Fn  𝑋 ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 | frgpup1 | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 19 | 10 1 | ghmf | ⊢ ( 𝐸  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐸 : 𝑋 ⟶ 𝐵 ) | 
						
							| 20 |  | ffn | ⊢ ( 𝐸 : 𝑋 ⟶ 𝐵  →  𝐸  Fn  𝑋 ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( 𝜑  →  𝐸  Fn  𝑋 ) | 
						
							| 22 |  | eqid | ⊢ ( freeMnd ‘ ( 𝐼  ×  2o ) )  =  ( freeMnd ‘ ( 𝐼  ×  2o ) ) | 
						
							| 23 | 9 22 8 | frgpval | ⊢ ( 𝐼  ∈  𝑉  →  𝐺  =  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  /s   ∼  ) ) | 
						
							| 24 | 5 23 | syl | ⊢ ( 𝜑  →  𝐺  =  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  /s   ∼  ) ) | 
						
							| 25 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 26 |  | xpexg | ⊢ ( ( 𝐼  ∈  𝑉  ∧  2o  ∈  On )  →  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 27 | 5 25 26 | sylancl | ⊢ ( 𝜑  →  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 28 |  | wrdexg | ⊢ ( ( 𝐼  ×  2o )  ∈  V  →  Word  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 29 |  | fvi | ⊢ ( Word  ( 𝐼  ×  2o )  ∈  V  →  (  I  ‘ Word  ( 𝐼  ×  2o ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 30 | 27 28 29 | 3syl | ⊢ ( 𝜑  →  (  I  ‘ Word  ( 𝐼  ×  2o ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 31 | 7 30 | eqtrid | ⊢ ( 𝜑  →  𝑊  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 32 |  | eqid | ⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) | 
						
							| 33 | 22 32 | frmdbas | ⊢ ( ( 𝐼  ×  2o )  ∈  V  →  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 34 | 27 33 | syl | ⊢ ( 𝜑  →  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 35 | 31 34 | eqtr4d | ⊢ ( 𝜑  →  𝑊  =  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) ) | 
						
							| 36 | 8 | fvexi | ⊢  ∼   ∈  V | 
						
							| 37 | 36 | a1i | ⊢ ( 𝜑  →   ∼   ∈  V ) | 
						
							| 38 |  | fvexd | ⊢ ( 𝜑  →  ( freeMnd ‘ ( 𝐼  ×  2o ) )  ∈  V ) | 
						
							| 39 | 24 35 37 38 | qusbas | ⊢ ( 𝜑  →  ( 𝑊  /   ∼  )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 40 | 10 39 | eqtr4id | ⊢ ( 𝜑  →  𝑋  =  ( 𝑊  /   ∼  ) ) | 
						
							| 41 |  | eqimss | ⊢ ( 𝑋  =  ( 𝑊  /   ∼  )  →  𝑋  ⊆  ( 𝑊  /   ∼  ) ) | 
						
							| 42 | 40 41 | syl | ⊢ ( 𝜑  →  𝑋  ⊆  ( 𝑊  /   ∼  ) ) | 
						
							| 43 | 42 | sselda | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑋 )  →  𝑎  ∈  ( 𝑊  /   ∼  ) ) | 
						
							| 44 |  | eqid | ⊢ ( 𝑊  /   ∼  )  =  ( 𝑊  /   ∼  ) | 
						
							| 45 |  | fveq2 | ⊢ ( [ 𝑡 ]  ∼   =  𝑎  →  ( 𝐾 ‘ [ 𝑡 ]  ∼  )  =  ( 𝐾 ‘ 𝑎 ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( [ 𝑡 ]  ∼   =  𝑎  →  ( 𝐸 ‘ [ 𝑡 ]  ∼  )  =  ( 𝐸 ‘ 𝑎 ) ) | 
						
							| 47 | 45 46 | eqeq12d | ⊢ ( [ 𝑡 ]  ∼   =  𝑎  →  ( ( 𝐾 ‘ [ 𝑡 ]  ∼  )  =  ( 𝐸 ‘ [ 𝑡 ]  ∼  )  ↔  ( 𝐾 ‘ 𝑎 )  =  ( 𝐸 ‘ 𝑎 ) ) ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝑡  ∈  𝑊 ) | 
						
							| 49 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝑊  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 50 | 48 49 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝑡  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 51 |  | wrdf | ⊢ ( 𝑡  ∈  Word  ( 𝐼  ×  2o )  →  𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ ( 𝐼  ×  2o ) ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ ( 𝐼  ×  2o ) ) | 
						
							| 53 | 52 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) ) )  →  ( 𝑡 ‘ 𝑛 )  ∈  ( 𝐼  ×  2o ) ) | 
						
							| 54 |  | elxp2 | ⊢ ( ( 𝑡 ‘ 𝑛 )  ∈  ( 𝐼  ×  2o )  ↔  ∃ 𝑖  ∈  𝐼 ∃ 𝑗  ∈  2o ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉 ) | 
						
							| 55 | 53 54 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) ) )  →  ∃ 𝑖  ∈  𝐼 ∃ 𝑗  ∈  2o ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉 ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑦  =  𝑖  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( 𝑦  =  𝑖  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 58 | 56 57 | ifeq12d | ⊢ ( 𝑦  =  𝑖  →  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) )  =  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 59 |  | eqeq1 | ⊢ ( 𝑧  =  𝑗  →  ( 𝑧  =  ∅  ↔  𝑗  =  ∅ ) ) | 
						
							| 60 | 59 | ifbid | ⊢ ( 𝑧  =  𝑗  →  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 61 |  | fvex | ⊢ ( 𝐹 ‘ 𝑖 )  ∈  V | 
						
							| 62 |  | fvex | ⊢ ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  V | 
						
							| 63 | 61 62 | ifex | ⊢ if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  ∈  V | 
						
							| 64 | 58 60 3 63 | ovmpo | ⊢ ( ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  2o )  →  ( 𝑖 𝑇 𝑗 )  =  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  2o ) )  →  ( 𝑖 𝑇 𝑗 )  =  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 66 |  | elpri | ⊢ ( 𝑗  ∈  { ∅ ,  1o }  →  ( 𝑗  =  ∅  ∨  𝑗  =  1o ) ) | 
						
							| 67 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 68 | 66 67 | eleq2s | ⊢ ( 𝑗  ∈  2o  →  ( 𝑗  =  ∅  ∨  𝑗  =  1o ) ) | 
						
							| 69 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝐾  ∘  𝑈 )  =  𝐹 ) | 
						
							| 70 | 69 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝐾  ∘  𝑈 ) ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 71 | 8 12 9 10 | vrgpf | ⊢ ( 𝐼  ∈  𝑉  →  𝑈 : 𝐼 ⟶ 𝑋 ) | 
						
							| 72 | 5 71 | syl | ⊢ ( 𝜑  →  𝑈 : 𝐼 ⟶ 𝑋 ) | 
						
							| 73 |  | fvco3 | ⊢ ( ( 𝑈 : 𝐼 ⟶ 𝑋  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝐾  ∘  𝑈 ) ‘ 𝑖 )  =  ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 74 | 72 73 | sylan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝐾  ∘  𝑈 ) ‘ 𝑖 )  =  ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 75 | 70 74 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  ∅ )  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 77 |  | iftrue | ⊢ ( 𝑗  =  ∅  →  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  ∅ )  →  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 79 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  ∅ )  →  𝑗  =  ∅ ) | 
						
							| 80 | 79 | opeq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  ∅ )  →  〈 𝑖 ,  𝑗 〉  =  〈 𝑖 ,  ∅ 〉 ) | 
						
							| 81 | 80 | s1eqd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  ∅ )  →  〈“ 〈 𝑖 ,  𝑗 〉 ”〉  =  〈“ 〈 𝑖 ,  ∅ 〉 ”〉 ) | 
						
							| 82 | 81 | eceq1d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  ∅ )  →  [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼   =  [ 〈“ 〈 𝑖 ,  ∅ 〉 ”〉 ]  ∼  ) | 
						
							| 83 | 8 12 | vrgpval | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑖  ∈  𝐼 )  →  ( 𝑈 ‘ 𝑖 )  =  [ 〈“ 〈 𝑖 ,  ∅ 〉 ”〉 ]  ∼  ) | 
						
							| 84 | 5 83 | sylan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑈 ‘ 𝑖 )  =  [ 〈“ 〈 𝑖 ,  ∅ 〉 ”〉 ]  ∼  ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  ∅ )  →  ( 𝑈 ‘ 𝑖 )  =  [ 〈“ 〈 𝑖 ,  ∅ 〉 ”〉 ]  ∼  ) | 
						
							| 86 | 82 85 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  ∅ )  →  [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼   =  ( 𝑈 ‘ 𝑖 ) ) | 
						
							| 87 | 86 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  ∅ )  →  ( 𝐾 ‘ [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  )  =  ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 88 | 76 78 87 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  ∅ )  →  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( 𝐾 ‘ [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  ) ) | 
						
							| 89 | 75 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( 𝑁 ‘ ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 90 | 72 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑈 ‘ 𝑖 )  ∈  𝑋 ) | 
						
							| 91 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 92 | 10 91 2 | ghminv | ⊢ ( ( 𝐾  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  ( 𝑈 ‘ 𝑖 )  ∈  𝑋 )  →  ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) )  =  ( 𝑁 ‘ ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 93 | 13 90 92 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) )  =  ( 𝑁 ‘ ( 𝐾 ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 94 | 89 93 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 96 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 97 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  𝑗  =  1o ) | 
						
							| 98 | 97 | neeq1d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  ( 𝑗  ≠  ∅  ↔  1o  ≠  ∅ ) ) | 
						
							| 99 | 96 98 | mpbiri | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  𝑗  ≠  ∅ ) | 
						
							| 100 |  | ifnefalse | ⊢ ( 𝑗  ≠  ∅  →  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 101 | 99 100 | syl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 102 | 97 | opeq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  〈 𝑖 ,  𝑗 〉  =  〈 𝑖 ,  1o 〉 ) | 
						
							| 103 | 102 | s1eqd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  〈“ 〈 𝑖 ,  𝑗 〉 ”〉  =  〈“ 〈 𝑖 ,  1o 〉 ”〉 ) | 
						
							| 104 | 103 | eceq1d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼   =  [ 〈“ 〈 𝑖 ,  1o 〉 ”〉 ]  ∼  ) | 
						
							| 105 | 8 12 9 91 | vrgpinv | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑖  ∈  𝐼 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) )  =  [ 〈“ 〈 𝑖 ,  1o 〉 ”〉 ]  ∼  ) | 
						
							| 106 | 5 105 | sylan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) )  =  [ 〈“ 〈 𝑖 ,  1o 〉 ”〉 ]  ∼  ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) )  =  [ 〈“ 〈 𝑖 ,  1o 〉 ”〉 ]  ∼  ) | 
						
							| 108 | 104 107 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼   =  ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 109 | 108 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  ( 𝐾 ‘ [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  )  =  ( 𝐾 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 110 | 95 101 109 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  =  1o )  →  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( 𝐾 ‘ [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  ) ) | 
						
							| 111 | 88 110 | jaodan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  ( 𝑗  =  ∅  ∨  𝑗  =  1o ) )  →  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( 𝐾 ‘ [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  ) ) | 
						
							| 112 | 68 111 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  ∧  𝑗  ∈  2o )  →  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( 𝐾 ‘ [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  ) ) | 
						
							| 113 | 112 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  2o ) )  →  if ( 𝑗  =  ∅ ,  ( 𝐹 ‘ 𝑖 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑖 ) ) )  =  ( 𝐾 ‘ [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  ) ) | 
						
							| 114 | 65 113 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  2o ) )  →  ( 𝑖 𝑇 𝑗 )  =  ( 𝐾 ‘ [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  ) ) | 
						
							| 115 |  | fveq2 | ⊢ ( ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉  →  ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) )  =  ( 𝑇 ‘ 〈 𝑖 ,  𝑗 〉 ) ) | 
						
							| 116 |  | df-ov | ⊢ ( 𝑖 𝑇 𝑗 )  =  ( 𝑇 ‘ 〈 𝑖 ,  𝑗 〉 ) | 
						
							| 117 | 115 116 | eqtr4di | ⊢ ( ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉  →  ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) )  =  ( 𝑖 𝑇 𝑗 ) ) | 
						
							| 118 |  | s1eq | ⊢ ( ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉  →  〈“ ( 𝑡 ‘ 𝑛 ) ”〉  =  〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ) | 
						
							| 119 | 118 | eceq1d | ⊢ ( ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉  →  [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼   =  [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  ) | 
						
							| 120 | 119 | fveq2d | ⊢ ( ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉  →  ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  )  =  ( 𝐾 ‘ [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  ) ) | 
						
							| 121 | 117 120 | eqeq12d | ⊢ ( ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉  →  ( ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) )  =  ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  )  ↔  ( 𝑖 𝑇 𝑗 )  =  ( 𝐾 ‘ [ 〈“ 〈 𝑖 ,  𝑗 〉 ”〉 ]  ∼  ) ) ) | 
						
							| 122 | 114 121 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  2o ) )  →  ( ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉  →  ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) )  =  ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  ) ) ) | 
						
							| 123 | 122 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  𝐼 ∃ 𝑗  ∈  2o ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉  →  ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) )  =  ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  ) ) ) | 
						
							| 124 | 123 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) ) )  →  ( ∃ 𝑖  ∈  𝐼 ∃ 𝑗  ∈  2o ( 𝑡 ‘ 𝑛 )  =  〈 𝑖 ,  𝑗 〉  →  ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) )  =  ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  ) ) ) | 
						
							| 125 | 55 124 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) ) )  →  ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) )  =  ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  ) ) | 
						
							| 126 | 125 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) )  ↦  ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) )  ↦  ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  ) ) ) | 
						
							| 127 | 1 2 3 4 5 6 | frgpuptf | ⊢ ( 𝜑  →  𝑇 : ( 𝐼  ×  2o ) ⟶ 𝐵 ) | 
						
							| 128 |  | fcompt | ⊢ ( ( 𝑇 : ( 𝐼  ×  2o ) ⟶ 𝐵  ∧  𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ ( 𝐼  ×  2o ) )  →  ( 𝑇  ∘  𝑡 )  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) )  ↦  ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) ) ) | 
						
							| 129 | 127 52 128 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝑇  ∘  𝑡 )  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) )  ↦  ( 𝑇 ‘ ( 𝑡 ‘ 𝑛 ) ) ) ) | 
						
							| 130 | 53 | s1cld | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) ) )  →  〈“ ( 𝑡 ‘ 𝑛 ) ”〉  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 131 | 31 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) ) )  →  𝑊  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 132 | 130 131 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) ) )  →  〈“ ( 𝑡 ‘ 𝑛 ) ”〉  ∈  𝑊 ) | 
						
							| 133 | 9 8 7 10 | frgpeccl | ⊢ ( 〈“ ( 𝑡 ‘ 𝑛 ) ”〉  ∈  𝑊  →  [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼   ∈  𝑋 ) | 
						
							| 134 | 132 133 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) ) )  →  [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼   ∈  𝑋 ) | 
						
							| 135 | 52 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝑡  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) )  ↦  ( 𝑡 ‘ 𝑛 ) ) ) | 
						
							| 136 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝐼  ∈  𝑉 ) | 
						
							| 137 | 136 25 26 | sylancl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 138 |  | eqid | ⊢ ( varFMnd ‘ ( 𝐼  ×  2o ) )  =  ( varFMnd ‘ ( 𝐼  ×  2o ) ) | 
						
							| 139 | 138 | vrmdfval | ⊢ ( ( 𝐼  ×  2o )  ∈  V  →  ( varFMnd ‘ ( 𝐼  ×  2o ) )  =  ( 𝑤  ∈  ( 𝐼  ×  2o )  ↦  〈“ 𝑤 ”〉 ) ) | 
						
							| 140 | 137 139 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( varFMnd ‘ ( 𝐼  ×  2o ) )  =  ( 𝑤  ∈  ( 𝐼  ×  2o )  ↦  〈“ 𝑤 ”〉 ) ) | 
						
							| 141 |  | s1eq | ⊢ ( 𝑤  =  ( 𝑡 ‘ 𝑛 )  →  〈“ 𝑤 ”〉  =  〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ) | 
						
							| 142 | 53 135 140 141 | fmptco | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 )  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) )  ↦  〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ) ) | 
						
							| 143 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  =  ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) ) | 
						
							| 144 |  | eceq1 | ⊢ ( 𝑤  =  〈“ ( 𝑡 ‘ 𝑛 ) ”〉  →  [ 𝑤 ]  ∼   =  [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  ) | 
						
							| 145 | 132 142 143 144 | fmptco | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) )  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) )  ↦  [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  ) ) | 
						
							| 146 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝐾  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 147 | 146 15 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝐾 : 𝑋 ⟶ 𝐵 ) | 
						
							| 148 | 147 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝐾  =  ( 𝑤  ∈  𝑋  ↦  ( 𝐾 ‘ 𝑤 ) ) ) | 
						
							| 149 |  | fveq2 | ⊢ ( 𝑤  =  [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼   →  ( 𝐾 ‘ 𝑤 )  =  ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  ) ) | 
						
							| 150 | 134 145 148 149 | fmptco | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝐾  ∘  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) )  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑡 ) )  ↦  ( 𝐾 ‘ [ 〈“ ( 𝑡 ‘ 𝑛 ) ”〉 ]  ∼  ) ) ) | 
						
							| 151 | 126 129 150 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝑇  ∘  𝑡 )  =  ( 𝐾  ∘  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) ) ) | 
						
							| 152 | 151 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝐻  Σg  ( 𝑇  ∘  𝑡 ) )  =  ( 𝐻  Σg  ( 𝐾  ∘  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) ) ) ) | 
						
							| 153 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝐸 ‘ [ 𝑡 ]  ∼  )  =  ( 𝐻  Σg  ( 𝑇  ∘  𝑡 ) ) ) | 
						
							| 154 |  | ghmmhm | ⊢ ( 𝐾  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐾  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 155 | 146 154 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝐾  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 156 | 138 | vrmdf | ⊢ ( ( 𝐼  ×  2o )  ∈  V  →  ( varFMnd ‘ ( 𝐼  ×  2o ) ) : ( 𝐼  ×  2o ) ⟶ Word  ( 𝐼  ×  2o ) ) | 
						
							| 157 | 137 156 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( varFMnd ‘ ( 𝐼  ×  2o ) ) : ( 𝐼  ×  2o ) ⟶ Word  ( 𝐼  ×  2o ) ) | 
						
							| 158 | 49 | feq3d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( varFMnd ‘ ( 𝐼  ×  2o ) ) : ( 𝐼  ×  2o ) ⟶ 𝑊  ↔  ( varFMnd ‘ ( 𝐼  ×  2o ) ) : ( 𝐼  ×  2o ) ⟶ Word  ( 𝐼  ×  2o ) ) ) | 
						
							| 159 | 157 158 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( varFMnd ‘ ( 𝐼  ×  2o ) ) : ( 𝐼  ×  2o ) ⟶ 𝑊 ) | 
						
							| 160 |  | wrdco | ⊢ ( ( 𝑡  ∈  Word  ( 𝐼  ×  2o )  ∧  ( varFMnd ‘ ( 𝐼  ×  2o ) ) : ( 𝐼  ×  2o ) ⟶ 𝑊 )  →  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 )  ∈  Word  𝑊 ) | 
						
							| 161 | 50 159 160 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 )  ∈  Word  𝑊 ) | 
						
							| 162 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝑊  =  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) ) | 
						
							| 163 | 162 | mpteq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  =  ( 𝑤  ∈  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  ↦  [ 𝑤 ]  ∼  ) ) | 
						
							| 164 |  | eqid | ⊢ ( 𝑤  ∈  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  ↦  [ 𝑤 ]  ∼  )  =  ( 𝑤  ∈  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  ↦  [ 𝑤 ]  ∼  ) | 
						
							| 165 | 22 32 9 8 164 | frgpmhm | ⊢ ( 𝐼  ∈  𝑉  →  ( 𝑤  ∈  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  ↦  [ 𝑤 ]  ∼  )  ∈  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  MndHom  𝐺 ) ) | 
						
							| 166 | 136 165 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝑤  ∈  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  ↦  [ 𝑤 ]  ∼  )  ∈  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  MndHom  𝐺 ) ) | 
						
							| 167 | 163 166 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∈  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  MndHom  𝐺 ) ) | 
						
							| 168 | 32 10 | mhmf | ⊢ ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∈  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  MndHom  𝐺 )  →  ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) : ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) ⟶ 𝑋 ) | 
						
							| 169 | 167 168 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) : ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) ⟶ 𝑋 ) | 
						
							| 170 | 162 | feq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) : 𝑊 ⟶ 𝑋  ↔  ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) : ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) ⟶ 𝑋 ) ) | 
						
							| 171 | 169 170 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) : 𝑊 ⟶ 𝑋 ) | 
						
							| 172 |  | wrdco | ⊢ ( ( ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 )  ∈  Word  𝑊  ∧  ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) : 𝑊 ⟶ 𝑋 )  →  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) )  ∈  Word  𝑋 ) | 
						
							| 173 | 161 171 172 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) )  ∈  Word  𝑋 ) | 
						
							| 174 | 10 | gsumwmhm | ⊢ ( ( 𝐾  ∈  ( 𝐺  MndHom  𝐻 )  ∧  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) )  ∈  Word  𝑋 )  →  ( 𝐾 ‘ ( 𝐺  Σg  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) ) )  =  ( 𝐻  Σg  ( 𝐾  ∘  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) ) ) ) | 
						
							| 175 | 155 173 174 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝐾 ‘ ( 𝐺  Σg  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) ) )  =  ( 𝐻  Σg  ( 𝐾  ∘  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) ) ) ) | 
						
							| 176 | 152 153 175 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝐸 ‘ [ 𝑡 ]  ∼  )  =  ( 𝐾 ‘ ( 𝐺  Σg  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) ) ) ) | 
						
							| 177 | 22 138 | frmdgsum | ⊢ ( ( ( 𝐼  ×  2o )  ∈  V  ∧  𝑡  ∈  Word  ( 𝐼  ×  2o ) )  →  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  Σg  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) )  =  𝑡 ) | 
						
							| 178 | 27 50 177 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  Σg  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) )  =  𝑡 ) | 
						
							| 179 | 178 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) ‘ ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  Σg  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) )  =  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) ‘ 𝑡 ) ) | 
						
							| 180 |  | wrdco | ⊢ ( ( 𝑡  ∈  Word  ( 𝐼  ×  2o )  ∧  ( varFMnd ‘ ( 𝐼  ×  2o ) ) : ( 𝐼  ×  2o ) ⟶ Word  ( 𝐼  ×  2o ) )  →  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 )  ∈  Word  Word  ( 𝐼  ×  2o ) ) | 
						
							| 181 | 50 157 180 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 )  ∈  Word  Word  ( 𝐼  ×  2o ) ) | 
						
							| 182 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 183 |  | wrdeq | ⊢ ( ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  Word  ( 𝐼  ×  2o )  →  Word  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  Word  Word  ( 𝐼  ×  2o ) ) | 
						
							| 184 | 182 183 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  Word  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  Word  Word  ( 𝐼  ×  2o ) ) | 
						
							| 185 | 181 184 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 )  ∈  Word  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) ) | 
						
							| 186 | 32 | gsumwmhm | ⊢ ( ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∈  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  MndHom  𝐺 )  ∧  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 )  ∈  Word  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) )  →  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) ‘ ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  Σg  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) )  =  ( 𝐺  Σg  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) ) ) | 
						
							| 187 | 167 185 186 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) ‘ ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  Σg  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) )  =  ( 𝐺  Σg  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) ) ) | 
						
							| 188 | 7 8 | efger | ⊢  ∼   Er  𝑊 | 
						
							| 189 | 188 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →   ∼   Er  𝑊 ) | 
						
							| 190 | 7 | fvexi | ⊢ 𝑊  ∈  V | 
						
							| 191 | 190 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  𝑊  ∈  V ) | 
						
							| 192 |  | eqid | ⊢ ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  =  ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) | 
						
							| 193 | 189 191 192 | divsfval | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  ) ‘ 𝑡 )  =  [ 𝑡 ]  ∼  ) | 
						
							| 194 | 179 187 193 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝐺  Σg  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) )  =  [ 𝑡 ]  ∼  ) | 
						
							| 195 | 194 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝐾 ‘ ( 𝐺  Σg  ( ( 𝑤  ∈  𝑊  ↦  [ 𝑤 ]  ∼  )  ∘  ( ( varFMnd ‘ ( 𝐼  ×  2o ) )  ∘  𝑡 ) ) ) )  =  ( 𝐾 ‘ [ 𝑡 ]  ∼  ) ) | 
						
							| 196 | 176 195 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝐾 ‘ [ 𝑡 ]  ∼  )  =  ( 𝐸 ‘ [ 𝑡 ]  ∼  ) ) | 
						
							| 197 | 44 47 196 | ectocld | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑊  /   ∼  ) )  →  ( 𝐾 ‘ 𝑎 )  =  ( 𝐸 ‘ 𝑎 ) ) | 
						
							| 198 | 43 197 | syldan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑋 )  →  ( 𝐾 ‘ 𝑎 )  =  ( 𝐸 ‘ 𝑎 ) ) | 
						
							| 199 | 17 21 198 | eqfnfvd | ⊢ ( 𝜑  →  𝐾  =  𝐸 ) |