| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup.b |  |-  B = ( Base ` H ) | 
						
							| 2 |  | frgpup.n |  |-  N = ( invg ` H ) | 
						
							| 3 |  | frgpup.t |  |-  T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) | 
						
							| 4 |  | frgpup.h |  |-  ( ph -> H e. Grp ) | 
						
							| 5 |  | frgpup.i |  |-  ( ph -> I e. V ) | 
						
							| 6 |  | frgpup.a |  |-  ( ph -> F : I --> B ) | 
						
							| 7 |  | frgpup.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 8 |  | frgpup.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 9 |  | frgpup.g |  |-  G = ( freeGrp ` I ) | 
						
							| 10 |  | frgpup.x |  |-  X = ( Base ` G ) | 
						
							| 11 |  | frgpup.e |  |-  E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) | 
						
							| 12 |  | frgpup.u |  |-  U = ( varFGrp ` I ) | 
						
							| 13 |  | frgpup3.k |  |-  ( ph -> K e. ( G GrpHom H ) ) | 
						
							| 14 |  | frgpup3.e |  |-  ( ph -> ( K o. U ) = F ) | 
						
							| 15 | 10 1 | ghmf |  |-  ( K e. ( G GrpHom H ) -> K : X --> B ) | 
						
							| 16 |  | ffn |  |-  ( K : X --> B -> K Fn X ) | 
						
							| 17 | 13 15 16 | 3syl |  |-  ( ph -> K Fn X ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 | frgpup1 |  |-  ( ph -> E e. ( G GrpHom H ) ) | 
						
							| 19 | 10 1 | ghmf |  |-  ( E e. ( G GrpHom H ) -> E : X --> B ) | 
						
							| 20 |  | ffn |  |-  ( E : X --> B -> E Fn X ) | 
						
							| 21 | 18 19 20 | 3syl |  |-  ( ph -> E Fn X ) | 
						
							| 22 |  | eqid |  |-  ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) | 
						
							| 23 | 9 22 8 | frgpval |  |-  ( I e. V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) | 
						
							| 24 | 5 23 | syl |  |-  ( ph -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) | 
						
							| 25 |  | 2on |  |-  2o e. On | 
						
							| 26 |  | xpexg |  |-  ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) | 
						
							| 27 | 5 25 26 | sylancl |  |-  ( ph -> ( I X. 2o ) e. _V ) | 
						
							| 28 |  | wrdexg |  |-  ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) | 
						
							| 29 |  | fvi |  |-  ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) | 
						
							| 30 | 27 28 29 | 3syl |  |-  ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) | 
						
							| 31 | 7 30 | eqtrid |  |-  ( ph -> W = Word ( I X. 2o ) ) | 
						
							| 32 |  | eqid |  |-  ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) | 
						
							| 33 | 22 32 | frmdbas |  |-  ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) | 
						
							| 34 | 27 33 | syl |  |-  ( ph -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) | 
						
							| 35 | 31 34 | eqtr4d |  |-  ( ph -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) | 
						
							| 36 | 8 | fvexi |  |-  .~ e. _V | 
						
							| 37 | 36 | a1i |  |-  ( ph -> .~ e. _V ) | 
						
							| 38 |  | fvexd |  |-  ( ph -> ( freeMnd ` ( I X. 2o ) ) e. _V ) | 
						
							| 39 | 24 35 37 38 | qusbas |  |-  ( ph -> ( W /. .~ ) = ( Base ` G ) ) | 
						
							| 40 | 10 39 | eqtr4id |  |-  ( ph -> X = ( W /. .~ ) ) | 
						
							| 41 |  | eqimss |  |-  ( X = ( W /. .~ ) -> X C_ ( W /. .~ ) ) | 
						
							| 42 | 40 41 | syl |  |-  ( ph -> X C_ ( W /. .~ ) ) | 
						
							| 43 | 42 | sselda |  |-  ( ( ph /\ a e. X ) -> a e. ( W /. .~ ) ) | 
						
							| 44 |  | eqid |  |-  ( W /. .~ ) = ( W /. .~ ) | 
						
							| 45 |  | fveq2 |  |-  ( [ t ] .~ = a -> ( K ` [ t ] .~ ) = ( K ` a ) ) | 
						
							| 46 |  | fveq2 |  |-  ( [ t ] .~ = a -> ( E ` [ t ] .~ ) = ( E ` a ) ) | 
						
							| 47 | 45 46 | eqeq12d |  |-  ( [ t ] .~ = a -> ( ( K ` [ t ] .~ ) = ( E ` [ t ] .~ ) <-> ( K ` a ) = ( E ` a ) ) ) | 
						
							| 48 |  | simpr |  |-  ( ( ph /\ t e. W ) -> t e. W ) | 
						
							| 49 | 31 | adantr |  |-  ( ( ph /\ t e. W ) -> W = Word ( I X. 2o ) ) | 
						
							| 50 | 48 49 | eleqtrd |  |-  ( ( ph /\ t e. W ) -> t e. Word ( I X. 2o ) ) | 
						
							| 51 |  | wrdf |  |-  ( t e. Word ( I X. 2o ) -> t : ( 0 ..^ ( # ` t ) ) --> ( I X. 2o ) ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( ph /\ t e. W ) -> t : ( 0 ..^ ( # ` t ) ) --> ( I X. 2o ) ) | 
						
							| 53 | 52 | ffvelcdmda |  |-  ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> ( t ` n ) e. ( I X. 2o ) ) | 
						
							| 54 |  | elxp2 |  |-  ( ( t ` n ) e. ( I X. 2o ) <-> E. i e. I E. j e. 2o ( t ` n ) = <. i , j >. ) | 
						
							| 55 | 53 54 | sylib |  |-  ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> E. i e. I E. j e. 2o ( t ` n ) = <. i , j >. ) | 
						
							| 56 |  | fveq2 |  |-  ( y = i -> ( F ` y ) = ( F ` i ) ) | 
						
							| 57 | 56 | fveq2d |  |-  ( y = i -> ( N ` ( F ` y ) ) = ( N ` ( F ` i ) ) ) | 
						
							| 58 | 56 57 | ifeq12d |  |-  ( y = i -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = if ( z = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) ) | 
						
							| 59 |  | eqeq1 |  |-  ( z = j -> ( z = (/) <-> j = (/) ) ) | 
						
							| 60 | 59 | ifbid |  |-  ( z = j -> if ( z = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) ) | 
						
							| 61 |  | fvex |  |-  ( F ` i ) e. _V | 
						
							| 62 |  | fvex |  |-  ( N ` ( F ` i ) ) e. _V | 
						
							| 63 | 61 62 | ifex |  |-  if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) e. _V | 
						
							| 64 | 58 60 3 63 | ovmpo |  |-  ( ( i e. I /\ j e. 2o ) -> ( i T j ) = if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ph /\ ( i e. I /\ j e. 2o ) ) -> ( i T j ) = if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) ) | 
						
							| 66 |  | elpri |  |-  ( j e. { (/) , 1o } -> ( j = (/) \/ j = 1o ) ) | 
						
							| 67 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 68 | 66 67 | eleq2s |  |-  ( j e. 2o -> ( j = (/) \/ j = 1o ) ) | 
						
							| 69 | 14 | adantr |  |-  ( ( ph /\ i e. I ) -> ( K o. U ) = F ) | 
						
							| 70 | 69 | fveq1d |  |-  ( ( ph /\ i e. I ) -> ( ( K o. U ) ` i ) = ( F ` i ) ) | 
						
							| 71 | 8 12 9 10 | vrgpf |  |-  ( I e. V -> U : I --> X ) | 
						
							| 72 | 5 71 | syl |  |-  ( ph -> U : I --> X ) | 
						
							| 73 |  | fvco3 |  |-  ( ( U : I --> X /\ i e. I ) -> ( ( K o. U ) ` i ) = ( K ` ( U ` i ) ) ) | 
						
							| 74 | 72 73 | sylan |  |-  ( ( ph /\ i e. I ) -> ( ( K o. U ) ` i ) = ( K ` ( U ` i ) ) ) | 
						
							| 75 | 70 74 | eqtr3d |  |-  ( ( ph /\ i e. I ) -> ( F ` i ) = ( K ` ( U ` i ) ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( ph /\ i e. I ) /\ j = (/) ) -> ( F ` i ) = ( K ` ( U ` i ) ) ) | 
						
							| 77 |  | iftrue |  |-  ( j = (/) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( F ` i ) ) | 
						
							| 78 | 77 | adantl |  |-  ( ( ( ph /\ i e. I ) /\ j = (/) ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( F ` i ) ) | 
						
							| 79 |  | simpr |  |-  ( ( ( ph /\ i e. I ) /\ j = (/) ) -> j = (/) ) | 
						
							| 80 | 79 | opeq2d |  |-  ( ( ( ph /\ i e. I ) /\ j = (/) ) -> <. i , j >. = <. i , (/) >. ) | 
						
							| 81 | 80 | s1eqd |  |-  ( ( ( ph /\ i e. I ) /\ j = (/) ) -> <" <. i , j >. "> = <" <. i , (/) >. "> ) | 
						
							| 82 | 81 | eceq1d |  |-  ( ( ( ph /\ i e. I ) /\ j = (/) ) -> [ <" <. i , j >. "> ] .~ = [ <" <. i , (/) >. "> ] .~ ) | 
						
							| 83 | 8 12 | vrgpval |  |-  ( ( I e. V /\ i e. I ) -> ( U ` i ) = [ <" <. i , (/) >. "> ] .~ ) | 
						
							| 84 | 5 83 | sylan |  |-  ( ( ph /\ i e. I ) -> ( U ` i ) = [ <" <. i , (/) >. "> ] .~ ) | 
						
							| 85 | 84 | adantr |  |-  ( ( ( ph /\ i e. I ) /\ j = (/) ) -> ( U ` i ) = [ <" <. i , (/) >. "> ] .~ ) | 
						
							| 86 | 82 85 | eqtr4d |  |-  ( ( ( ph /\ i e. I ) /\ j = (/) ) -> [ <" <. i , j >. "> ] .~ = ( U ` i ) ) | 
						
							| 87 | 86 | fveq2d |  |-  ( ( ( ph /\ i e. I ) /\ j = (/) ) -> ( K ` [ <" <. i , j >. "> ] .~ ) = ( K ` ( U ` i ) ) ) | 
						
							| 88 | 76 78 87 | 3eqtr4d |  |-  ( ( ( ph /\ i e. I ) /\ j = (/) ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) | 
						
							| 89 | 75 | fveq2d |  |-  ( ( ph /\ i e. I ) -> ( N ` ( F ` i ) ) = ( N ` ( K ` ( U ` i ) ) ) ) | 
						
							| 90 | 72 | ffvelcdmda |  |-  ( ( ph /\ i e. I ) -> ( U ` i ) e. X ) | 
						
							| 91 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 92 | 10 91 2 | ghminv |  |-  ( ( K e. ( G GrpHom H ) /\ ( U ` i ) e. X ) -> ( K ` ( ( invg ` G ) ` ( U ` i ) ) ) = ( N ` ( K ` ( U ` i ) ) ) ) | 
						
							| 93 | 13 90 92 | syl2an2r |  |-  ( ( ph /\ i e. I ) -> ( K ` ( ( invg ` G ) ` ( U ` i ) ) ) = ( N ` ( K ` ( U ` i ) ) ) ) | 
						
							| 94 | 89 93 | eqtr4d |  |-  ( ( ph /\ i e. I ) -> ( N ` ( F ` i ) ) = ( K ` ( ( invg ` G ) ` ( U ` i ) ) ) ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> ( N ` ( F ` i ) ) = ( K ` ( ( invg ` G ) ` ( U ` i ) ) ) ) | 
						
							| 96 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 97 |  | simpr |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> j = 1o ) | 
						
							| 98 | 97 | neeq1d |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> ( j =/= (/) <-> 1o =/= (/) ) ) | 
						
							| 99 | 96 98 | mpbiri |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> j =/= (/) ) | 
						
							| 100 |  | ifnefalse |  |-  ( j =/= (/) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( N ` ( F ` i ) ) ) | 
						
							| 101 | 99 100 | syl |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( N ` ( F ` i ) ) ) | 
						
							| 102 | 97 | opeq2d |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> <. i , j >. = <. i , 1o >. ) | 
						
							| 103 | 102 | s1eqd |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> <" <. i , j >. "> = <" <. i , 1o >. "> ) | 
						
							| 104 | 103 | eceq1d |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> [ <" <. i , j >. "> ] .~ = [ <" <. i , 1o >. "> ] .~ ) | 
						
							| 105 | 8 12 9 91 | vrgpinv |  |-  ( ( I e. V /\ i e. I ) -> ( ( invg ` G ) ` ( U ` i ) ) = [ <" <. i , 1o >. "> ] .~ ) | 
						
							| 106 | 5 105 | sylan |  |-  ( ( ph /\ i e. I ) -> ( ( invg ` G ) ` ( U ` i ) ) = [ <" <. i , 1o >. "> ] .~ ) | 
						
							| 107 | 106 | adantr |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> ( ( invg ` G ) ` ( U ` i ) ) = [ <" <. i , 1o >. "> ] .~ ) | 
						
							| 108 | 104 107 | eqtr4d |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> [ <" <. i , j >. "> ] .~ = ( ( invg ` G ) ` ( U ` i ) ) ) | 
						
							| 109 | 108 | fveq2d |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> ( K ` [ <" <. i , j >. "> ] .~ ) = ( K ` ( ( invg ` G ) ` ( U ` i ) ) ) ) | 
						
							| 110 | 95 101 109 | 3eqtr4d |  |-  ( ( ( ph /\ i e. I ) /\ j = 1o ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) | 
						
							| 111 | 88 110 | jaodan |  |-  ( ( ( ph /\ i e. I ) /\ ( j = (/) \/ j = 1o ) ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) | 
						
							| 112 | 68 111 | sylan2 |  |-  ( ( ( ph /\ i e. I ) /\ j e. 2o ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) | 
						
							| 113 | 112 | anasss |  |-  ( ( ph /\ ( i e. I /\ j e. 2o ) ) -> if ( j = (/) , ( F ` i ) , ( N ` ( F ` i ) ) ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) | 
						
							| 114 | 65 113 | eqtrd |  |-  ( ( ph /\ ( i e. I /\ j e. 2o ) ) -> ( i T j ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) | 
						
							| 115 |  | fveq2 |  |-  ( ( t ` n ) = <. i , j >. -> ( T ` ( t ` n ) ) = ( T ` <. i , j >. ) ) | 
						
							| 116 |  | df-ov |  |-  ( i T j ) = ( T ` <. i , j >. ) | 
						
							| 117 | 115 116 | eqtr4di |  |-  ( ( t ` n ) = <. i , j >. -> ( T ` ( t ` n ) ) = ( i T j ) ) | 
						
							| 118 |  | s1eq |  |-  ( ( t ` n ) = <. i , j >. -> <" ( t ` n ) "> = <" <. i , j >. "> ) | 
						
							| 119 | 118 | eceq1d |  |-  ( ( t ` n ) = <. i , j >. -> [ <" ( t ` n ) "> ] .~ = [ <" <. i , j >. "> ] .~ ) | 
						
							| 120 | 119 | fveq2d |  |-  ( ( t ` n ) = <. i , j >. -> ( K ` [ <" ( t ` n ) "> ] .~ ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) | 
						
							| 121 | 117 120 | eqeq12d |  |-  ( ( t ` n ) = <. i , j >. -> ( ( T ` ( t ` n ) ) = ( K ` [ <" ( t ` n ) "> ] .~ ) <-> ( i T j ) = ( K ` [ <" <. i , j >. "> ] .~ ) ) ) | 
						
							| 122 | 114 121 | syl5ibrcom |  |-  ( ( ph /\ ( i e. I /\ j e. 2o ) ) -> ( ( t ` n ) = <. i , j >. -> ( T ` ( t ` n ) ) = ( K ` [ <" ( t ` n ) "> ] .~ ) ) ) | 
						
							| 123 | 122 | rexlimdvva |  |-  ( ph -> ( E. i e. I E. j e. 2o ( t ` n ) = <. i , j >. -> ( T ` ( t ` n ) ) = ( K ` [ <" ( t ` n ) "> ] .~ ) ) ) | 
						
							| 124 | 123 | ad2antrr |  |-  ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> ( E. i e. I E. j e. 2o ( t ` n ) = <. i , j >. -> ( T ` ( t ` n ) ) = ( K ` [ <" ( t ` n ) "> ] .~ ) ) ) | 
						
							| 125 | 55 124 | mpd |  |-  ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> ( T ` ( t ` n ) ) = ( K ` [ <" ( t ` n ) "> ] .~ ) ) | 
						
							| 126 | 125 | mpteq2dva |  |-  ( ( ph /\ t e. W ) -> ( n e. ( 0 ..^ ( # ` t ) ) |-> ( T ` ( t ` n ) ) ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> ( K ` [ <" ( t ` n ) "> ] .~ ) ) ) | 
						
							| 127 | 1 2 3 4 5 6 | frgpuptf |  |-  ( ph -> T : ( I X. 2o ) --> B ) | 
						
							| 128 |  | fcompt |  |-  ( ( T : ( I X. 2o ) --> B /\ t : ( 0 ..^ ( # ` t ) ) --> ( I X. 2o ) ) -> ( T o. t ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> ( T ` ( t ` n ) ) ) ) | 
						
							| 129 | 127 52 128 | syl2an2r |  |-  ( ( ph /\ t e. W ) -> ( T o. t ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> ( T ` ( t ` n ) ) ) ) | 
						
							| 130 | 53 | s1cld |  |-  ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> <" ( t ` n ) "> e. Word ( I X. 2o ) ) | 
						
							| 131 | 31 | ad2antrr |  |-  ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> W = Word ( I X. 2o ) ) | 
						
							| 132 | 130 131 | eleqtrrd |  |-  ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> <" ( t ` n ) "> e. W ) | 
						
							| 133 | 9 8 7 10 | frgpeccl |  |-  ( <" ( t ` n ) "> e. W -> [ <" ( t ` n ) "> ] .~ e. X ) | 
						
							| 134 | 132 133 | syl |  |-  ( ( ( ph /\ t e. W ) /\ n e. ( 0 ..^ ( # ` t ) ) ) -> [ <" ( t ` n ) "> ] .~ e. X ) | 
						
							| 135 | 52 | feqmptd |  |-  ( ( ph /\ t e. W ) -> t = ( n e. ( 0 ..^ ( # ` t ) ) |-> ( t ` n ) ) ) | 
						
							| 136 | 5 | adantr |  |-  ( ( ph /\ t e. W ) -> I e. V ) | 
						
							| 137 | 136 25 26 | sylancl |  |-  ( ( ph /\ t e. W ) -> ( I X. 2o ) e. _V ) | 
						
							| 138 |  | eqid |  |-  ( varFMnd ` ( I X. 2o ) ) = ( varFMnd ` ( I X. 2o ) ) | 
						
							| 139 | 138 | vrmdfval |  |-  ( ( I X. 2o ) e. _V -> ( varFMnd ` ( I X. 2o ) ) = ( w e. ( I X. 2o ) |-> <" w "> ) ) | 
						
							| 140 | 137 139 | syl |  |-  ( ( ph /\ t e. W ) -> ( varFMnd ` ( I X. 2o ) ) = ( w e. ( I X. 2o ) |-> <" w "> ) ) | 
						
							| 141 |  | s1eq |  |-  ( w = ( t ` n ) -> <" w "> = <" ( t ` n ) "> ) | 
						
							| 142 | 53 135 140 141 | fmptco |  |-  ( ( ph /\ t e. W ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> <" ( t ` n ) "> ) ) | 
						
							| 143 |  | eqidd |  |-  ( ( ph /\ t e. W ) -> ( w e. W |-> [ w ] .~ ) = ( w e. W |-> [ w ] .~ ) ) | 
						
							| 144 |  | eceq1 |  |-  ( w = <" ( t ` n ) "> -> [ w ] .~ = [ <" ( t ` n ) "> ] .~ ) | 
						
							| 145 | 132 142 143 144 | fmptco |  |-  ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> [ <" ( t ` n ) "> ] .~ ) ) | 
						
							| 146 | 13 | adantr |  |-  ( ( ph /\ t e. W ) -> K e. ( G GrpHom H ) ) | 
						
							| 147 | 146 15 | syl |  |-  ( ( ph /\ t e. W ) -> K : X --> B ) | 
						
							| 148 | 147 | feqmptd |  |-  ( ( ph /\ t e. W ) -> K = ( w e. X |-> ( K ` w ) ) ) | 
						
							| 149 |  | fveq2 |  |-  ( w = [ <" ( t ` n ) "> ] .~ -> ( K ` w ) = ( K ` [ <" ( t ` n ) "> ] .~ ) ) | 
						
							| 150 | 134 145 148 149 | fmptco |  |-  ( ( ph /\ t e. W ) -> ( K o. ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) = ( n e. ( 0 ..^ ( # ` t ) ) |-> ( K ` [ <" ( t ` n ) "> ] .~ ) ) ) | 
						
							| 151 | 126 129 150 | 3eqtr4d |  |-  ( ( ph /\ t e. W ) -> ( T o. t ) = ( K o. ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) | 
						
							| 152 | 151 | oveq2d |  |-  ( ( ph /\ t e. W ) -> ( H gsum ( T o. t ) ) = ( H gsum ( K o. ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) ) | 
						
							| 153 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval |  |-  ( ( ph /\ t e. W ) -> ( E ` [ t ] .~ ) = ( H gsum ( T o. t ) ) ) | 
						
							| 154 |  | ghmmhm |  |-  ( K e. ( G GrpHom H ) -> K e. ( G MndHom H ) ) | 
						
							| 155 | 146 154 | syl |  |-  ( ( ph /\ t e. W ) -> K e. ( G MndHom H ) ) | 
						
							| 156 | 138 | vrmdf |  |-  ( ( I X. 2o ) e. _V -> ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> Word ( I X. 2o ) ) | 
						
							| 157 | 137 156 | syl |  |-  ( ( ph /\ t e. W ) -> ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> Word ( I X. 2o ) ) | 
						
							| 158 | 49 | feq3d |  |-  ( ( ph /\ t e. W ) -> ( ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> W <-> ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> Word ( I X. 2o ) ) ) | 
						
							| 159 | 157 158 | mpbird |  |-  ( ( ph /\ t e. W ) -> ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> W ) | 
						
							| 160 |  | wrdco |  |-  ( ( t e. Word ( I X. 2o ) /\ ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> W ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word W ) | 
						
							| 161 | 50 159 160 | syl2anc |  |-  ( ( ph /\ t e. W ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word W ) | 
						
							| 162 | 35 | adantr |  |-  ( ( ph /\ t e. W ) -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) | 
						
							| 163 | 162 | mpteq1d |  |-  ( ( ph /\ t e. W ) -> ( w e. W |-> [ w ] .~ ) = ( w e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |-> [ w ] .~ ) ) | 
						
							| 164 |  | eqid |  |-  ( w e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |-> [ w ] .~ ) = ( w e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |-> [ w ] .~ ) | 
						
							| 165 | 22 32 9 8 164 | frgpmhm |  |-  ( I e. V -> ( w e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |-> [ w ] .~ ) e. ( ( freeMnd ` ( I X. 2o ) ) MndHom G ) ) | 
						
							| 166 | 136 165 | syl |  |-  ( ( ph /\ t e. W ) -> ( w e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |-> [ w ] .~ ) e. ( ( freeMnd ` ( I X. 2o ) ) MndHom G ) ) | 
						
							| 167 | 163 166 | eqeltrd |  |-  ( ( ph /\ t e. W ) -> ( w e. W |-> [ w ] .~ ) e. ( ( freeMnd ` ( I X. 2o ) ) MndHom G ) ) | 
						
							| 168 | 32 10 | mhmf |  |-  ( ( w e. W |-> [ w ] .~ ) e. ( ( freeMnd ` ( I X. 2o ) ) MndHom G ) -> ( w e. W |-> [ w ] .~ ) : ( Base ` ( freeMnd ` ( I X. 2o ) ) ) --> X ) | 
						
							| 169 | 167 168 | syl |  |-  ( ( ph /\ t e. W ) -> ( w e. W |-> [ w ] .~ ) : ( Base ` ( freeMnd ` ( I X. 2o ) ) ) --> X ) | 
						
							| 170 | 162 | feq2d |  |-  ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) : W --> X <-> ( w e. W |-> [ w ] .~ ) : ( Base ` ( freeMnd ` ( I X. 2o ) ) ) --> X ) ) | 
						
							| 171 | 169 170 | mpbird |  |-  ( ( ph /\ t e. W ) -> ( w e. W |-> [ w ] .~ ) : W --> X ) | 
						
							| 172 |  | wrdco |  |-  ( ( ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word W /\ ( w e. W |-> [ w ] .~ ) : W --> X ) -> ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) e. Word X ) | 
						
							| 173 | 161 171 172 | syl2anc |  |-  ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) e. Word X ) | 
						
							| 174 | 10 | gsumwmhm |  |-  ( ( K e. ( G MndHom H ) /\ ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) e. Word X ) -> ( K ` ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) = ( H gsum ( K o. ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) ) | 
						
							| 175 | 155 173 174 | syl2anc |  |-  ( ( ph /\ t e. W ) -> ( K ` ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) = ( H gsum ( K o. ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) ) | 
						
							| 176 | 152 153 175 | 3eqtr4d |  |-  ( ( ph /\ t e. W ) -> ( E ` [ t ] .~ ) = ( K ` ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) ) | 
						
							| 177 | 22 138 | frmdgsum |  |-  ( ( ( I X. 2o ) e. _V /\ t e. Word ( I X. 2o ) ) -> ( ( freeMnd ` ( I X. 2o ) ) gsum ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) = t ) | 
						
							| 178 | 27 50 177 | syl2an2r |  |-  ( ( ph /\ t e. W ) -> ( ( freeMnd ` ( I X. 2o ) ) gsum ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) = t ) | 
						
							| 179 | 178 | fveq2d |  |-  ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) ` ( ( freeMnd ` ( I X. 2o ) ) gsum ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) = ( ( w e. W |-> [ w ] .~ ) ` t ) ) | 
						
							| 180 |  | wrdco |  |-  ( ( t e. Word ( I X. 2o ) /\ ( varFMnd ` ( I X. 2o ) ) : ( I X. 2o ) --> Word ( I X. 2o ) ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word Word ( I X. 2o ) ) | 
						
							| 181 | 50 157 180 | syl2anc |  |-  ( ( ph /\ t e. W ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word Word ( I X. 2o ) ) | 
						
							| 182 | 34 | adantr |  |-  ( ( ph /\ t e. W ) -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) | 
						
							| 183 |  | wrdeq |  |-  ( ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) -> Word ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word Word ( I X. 2o ) ) | 
						
							| 184 | 182 183 | syl |  |-  ( ( ph /\ t e. W ) -> Word ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word Word ( I X. 2o ) ) | 
						
							| 185 | 181 184 | eleqtrrd |  |-  ( ( ph /\ t e. W ) -> ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) | 
						
							| 186 | 32 | gsumwmhm |  |-  ( ( ( w e. W |-> [ w ] .~ ) e. ( ( freeMnd ` ( I X. 2o ) ) MndHom G ) /\ ( ( varFMnd ` ( I X. 2o ) ) o. t ) e. Word ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( ( w e. W |-> [ w ] .~ ) ` ( ( freeMnd ` ( I X. 2o ) ) gsum ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) = ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) | 
						
							| 187 | 167 185 186 | syl2anc |  |-  ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) ` ( ( freeMnd ` ( I X. 2o ) ) gsum ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) = ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) | 
						
							| 188 | 7 8 | efger |  |-  .~ Er W | 
						
							| 189 | 188 | a1i |  |-  ( ( ph /\ t e. W ) -> .~ Er W ) | 
						
							| 190 | 7 | fvexi |  |-  W e. _V | 
						
							| 191 | 190 | a1i |  |-  ( ( ph /\ t e. W ) -> W e. _V ) | 
						
							| 192 |  | eqid |  |-  ( w e. W |-> [ w ] .~ ) = ( w e. W |-> [ w ] .~ ) | 
						
							| 193 | 189 191 192 | divsfval |  |-  ( ( ph /\ t e. W ) -> ( ( w e. W |-> [ w ] .~ ) ` t ) = [ t ] .~ ) | 
						
							| 194 | 179 187 193 | 3eqtr3d |  |-  ( ( ph /\ t e. W ) -> ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) = [ t ] .~ ) | 
						
							| 195 | 194 | fveq2d |  |-  ( ( ph /\ t e. W ) -> ( K ` ( G gsum ( ( w e. W |-> [ w ] .~ ) o. ( ( varFMnd ` ( I X. 2o ) ) o. t ) ) ) ) = ( K ` [ t ] .~ ) ) | 
						
							| 196 | 176 195 | eqtr2d |  |-  ( ( ph /\ t e. W ) -> ( K ` [ t ] .~ ) = ( E ` [ t ] .~ ) ) | 
						
							| 197 | 44 47 196 | ectocld |  |-  ( ( ph /\ a e. ( W /. .~ ) ) -> ( K ` a ) = ( E ` a ) ) | 
						
							| 198 | 43 197 | syldan |  |-  ( ( ph /\ a e. X ) -> ( K ` a ) = ( E ` a ) ) | 
						
							| 199 | 17 21 198 | eqfnfvd |  |-  ( ph -> K = E ) |