Step |
Hyp |
Ref |
Expression |
1 |
|
reu3 |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) ) |
2 |
|
reu3 |
⊢ ( ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) |
3 |
1 2
|
anbi12i |
⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) ∧ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
4 |
3
|
a1i |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) ∧ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) ) |
5 |
|
an4 |
⊢ ( ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) ∧ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ∧ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) ∧ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ∧ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) ) |
7 |
|
rexcom |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
8 |
7
|
anbi2i |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
9 |
|
anidm |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
10 |
8 9
|
bitri |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
11 |
10
|
a1i |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
12 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
13 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) |
14 |
13
|
r19.3rz |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
15 |
14
|
bicomd |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
18 |
17
|
anbi2d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
19 |
|
jcab |
⊢ ( ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
20 |
19
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
21 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
22 |
20 21
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
23 |
22
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
24 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
25 |
23 24
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
26 |
25
|
a1i |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
27 |
18 26
|
bitr4d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
28 |
12 27
|
bitr2id |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
29 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
30 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) |
31 |
30
|
r19.3rz |
⊢ ( 𝐵 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
32 |
31
|
ad2antlr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
33 |
32
|
bicomd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
34 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) |
35 |
34
|
a1i |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
36 |
33 35
|
anbi12d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
37 |
29 36
|
bitrid |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
38 |
37
|
ralbidv |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
39 |
28 38
|
bitr4d |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
40 |
|
r19.23v |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ) |
41 |
|
r19.23v |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) |
42 |
40 41
|
anbi12i |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) |
43 |
42
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) |
44 |
43
|
a1i |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
45 |
|
neneq |
⊢ ( 𝐴 ≠ ∅ → ¬ 𝐴 = ∅ ) |
46 |
|
neneq |
⊢ ( 𝐵 ≠ ∅ → ¬ 𝐵 = ∅ ) |
47 |
45 46
|
anim12i |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
48 |
47
|
olcd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) |
49 |
|
dfbi3 |
⊢ ( ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) ↔ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ∨ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) |
50 |
48 49
|
sylibr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) ) |
51 |
|
nfre1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐵 𝜑 |
52 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 = 𝑧 |
53 |
51 52
|
nfim |
⊢ Ⅎ 𝑦 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) |
54 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝜑 |
55 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 = 𝑤 |
56 |
54 55
|
nfim |
⊢ Ⅎ 𝑥 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) |
57 |
53 56
|
raaan2 |
⊢ ( ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
58 |
50 57
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
60 |
39 44 59
|
3bitrd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
61 |
60
|
2rexbidva |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ) |
62 |
|
reeanv |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) |
63 |
61 62
|
bitr2di |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
64 |
11 63
|
anbi12d |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ∧ ( ∃ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝑦 = 𝑤 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
65 |
4 6 64
|
3bitrd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |